

Oil and Gas Energy Developments and Changes in Crash Trends in Texas *Final report*

PRC 15-35 F

TRANSPORTATION Policy Research center

Oil and Gas Energy Developments and Changes in Crash Trends in Texas

Texas A&M Transportation Institute PRC 15-35 F October 2015

Authors

Cesar Quiroga, Ph.D., P.E. Ioannis Tsapakis, Ph.D.

Table of Contents

List of Figures	4
List of Tables	5
Executive Summary	7
Chapter 1. Crash Data Collection and Processing	15
Introduction	15
Crash Data	16
General Trends	
Chapter 2. Analysis and Trends	41
Oil and Gas Well Developments	
Changes in the Number of Crashes and Injuries	
Changes in Crash Rates	
Correlations	57
Economic Impact of Crashes	63
Chapter 3. Findings	66
References	74
Appendix	75

List of Figures

Figure 1. Change in the Number of Rural Fatal, Incapacitating, and Non-Incapacitating	
CMV Crashes vs. Change in the Number of Horizontal Wells	11
Figure 2. Overall Trends in Well Development, Rural CMV Crashes, and Crash Injury Costs	
from 2006–2009 to 2010–2013.	14
Figure 3. Counties Analyzed in the Eagle Ford Shale, Permian Basin, and Barnett Shale	
Regions.	16
Figure 4. Crash Index – All Crashes	36
Figure 5. Crash Index – Rural Crashes.	37
Figure 6. Crash Index – Rural CMV Crashes.	38
Figure 7. Top 10 Manners of Collision (2010–2013 Crash Data).	39
Figure 8. Top 10 Vehicle Contributing Factors (2010–2013 Crash Data)	40
Figure 9. Changes in Crash Rate (per 100 Million VMTs) from 2006–2009 to 2010–2013 –	
All Crashes and Rural Crashes.	53
Figure 10. Changes in Crash Rate (per 100 Million VMTs) from 2006–2009 to 2010–2013 –	
CMV Crashes and Rural CMV Crashes.	54
Figure 11. Changes in Crash Rate (per 100 Lane-Miles) from 2006–2009 to 2010–2013 –	
All Crashes and Rural Crashes.	55
Figure 12. Changes in Crash Rate (per 100 Lane-Miles) from 2006–2009 to 2010–2013 –	
CMV Crashes and Rural CMV Crashes.	56
Figure 13. Change in the Number of Rural KAB CMV Crashes vs. Change in the Number of	
Horizontal Wells	59
Figure 14. Observed versus Predicted Number of Rural KAB CMV Crashes in 2013	61

List of Tables

Table 1. Pearson Correlation Coefficients. 1	10
Table 2. Changes in Economic and Comprehensive Costs for Injuries Resulting from Rural	
CMV Crashes	2
Table 3. Number of Crashes. 1	9
Table 4. Number of Rural Crashes. 2	20
Table 5. Number of CMV Crashes	21
Table 6. Number of Rural CMV Crashes. 2	22
Table 7. Number of Crashes on State Highways. 2	23
Table 8. Number of Crashes on Rural State Highways	
Table 9. Number of CMV Crashes on State Highways	25
Table 10. Number of CMV Crashes on Rural State Highways	26
Table 11. Number of Injuries	
Table 12. Number of Injuries in Rural Crashes. 2	
Table 13. Number of Injuries in CMV Crashes	29
Table 14. Number of Injuries in Rural CMV Crashes. 3	30
Table 15. Number of Injuries in Crashes on State Highways	31
Table 16. Number of Injuries in Crashes on Rural State Highways	
Table 17. Number of Injuries in CMV Crashes on State Highways	
Table 18. Number of Injuries in CMV Crashes on Rural State Highways	
Table 19. Changes in the Number of New Completed Wells	41
Table 20. Changes in the Number of Crashes on All Highways	12
Table 21. Changes in the Number of Crashes on State Highways	
Table 22. Changes in the Number of Injuries on All Highways	14
Table 23. Changes in the Number of Injuries on State Highways	
Table 24. Number of Crashes over Four Years per 100 Million VMTs	
Table 25. Number of Crashes over Four Years per 100 Lane-Miles	51
Table 26. Rudimentary Thresholds to Interpret Pearson Correlation Coefficients	
Table 27. Pearson Correlation Coefficients. 5	
Table 28. Pearson Correlation Coefficients – Change in the Number of Rural KAB CMV	
Crashes vs. Change in the Number of New Wells from 2006–2009 to 2010–2013	58
Table 29. Average Coefficient of Variation. 6	
Table 30. Injury Severity Levels and Estimated Comprehensive Costs (Adapted from 4)	54
Table 31. Changes in Economic and Comprehensive Costs for Injuries Occurred in Rural	
CMV Crashes	55
Table 32. Changes in the Number of Crashes on All Highways. 6	58
Table 33. Changes in the Number of Injuries on All Highways	
Table 34. Number of Crashes over Four Years per 100 Lane-Miles	
Table 35. Changes in Economic and Comprehensive Costs for Injuries Occurred in Rural	
CMV Crashes	12

Table 36. Summary Results of Statistical Analysis for Model 1	75
Table 37. Summary Results of Statistical Analysis for Model 2	75
Table 38. Summary Results of Statistical Analysis for Model 3	82

Executive Summary

In fall 2014, the Texas Legislature asked the Texas A&M Transportation Institute (TTI) to update a study completed in late 2011 documenting locations and trends of oil and gas energy developments in the state. As part of the study, the Texas Legislature asked TTI to correlate oil and gas developments with changes in pavement condition data. TTI summarized the results of this analysis in a report published in March 2015.

To complement the study, the Texas Legislature asked TTI to gather and process crash data at a level of spatial and temporal detail needed to document locations and trends of crashes in relation to oil and gas energy developments in the state. Location and attribute data about crashes and injuries (i.e., number of people who are injured in crashes) that the research team compiled included the following types of crashes:

- All crashes.
- Rural crashes (i.e., crashes that occur outside city limits).
- Crashes in which commercial motor vehicles (CMVs) are involved.
- Rural CMV crashes.
- Crashes on state highways.
- Crashes on rural state highways.
- CMV crashes on state highways.
- CMV crashes on rural state highways.

With this information, the research team examined changes in the number of crashes and the number of injuries from 2006–2009 to 2010–2013. These date ranges were used for consistency with those in the original March 2015 report. The year 2009 was significant because this was when accelerated oil production started in the Eagle Ford Shale region and oil production in the Permian Basin region began to accelerate, making the end of 2009 suitable for use as a baseline for comparison purposes. The last year with reliable Railroad Commission data was 2013 (2014 data were still preliminary). In addition, the economic recession of 2008 caused significant volatility in the oil markets, which resulted in dramatic swings in prices, drilling, and production. In order to reduce the impact of these variations, the research team aggregated and compared data using two four-year blocks: 2006–2009 and 2010–2013.

The total number of crashes decreased by 10 percent in the Barnett Shale region, increased by 1 percent in the Eagle Ford Shale region, and decreased by 4 percent in the Permian Basin region. As a reference, the number of crashes decreased by 7 percent in all other 175 counties in the state. However, these changes were not uniform either by crash location and type of vehicles

involved or by injury severity. There were also significant differences geographically within each region. In general:

- Changes were more prominent for rural crashes. In the Barnett Shale region, the number of rural crashes decreased by 25 percent (compared to a 10 percent decrease overall in the region). In the Eagle Ford Shale region, the number of rural crashes increased by 4 percent (compared to a 1 percent increase overall in the region). In the Permian Basin region, the number of crashes increased by 11 percent (compared to a 4 percent decrease overall in the region).
- Changes were even more prominent for crashes that involved CMVs and, in particular, for rural crashes that involved CMVs. For rural crashes that involved CMVs, there was a 34 percent decrease in the Barnett Shale region, a 61 percent increase in the Eagle Ford Shale region, and a 52 percent increase in the Permian Basin region. By comparison, there was a 9 percent decrease in all other 175 counties in the state.
- For rural CMV crashes, changes in the relative number of crashes were larger as the severity of the injuries worsened. For example, in the Eagle Ford Shale region, there was a 77 percent increase in the number of fatal, incapacitating, and non-incapacitating injury crashes (compared to a 61 percent increase for all rural CMV crashes). For fatal crashes, the increase was 76 percent. In the Permian Basin region, there was a 57 percent increase in the number of fatal, incapacitating injury crashes (compared to a 52 percent increase for all rural CMV crashes). For fatal crashes (compared to a 52 percent increase for all rural CMV crashes). For fatal crashes was 88 percent. The exception to this trend was the Barnett Shale region, where there was a 26 percent decrease in the number of fatal, incapacitating, and non-incapacitating injury crashes (compared to a 34 percent decrease for all crashes). For fatal crashes, the decrease was 37 percent.
- Relative changes in the number of crashes on state highways were similar to those found for all highways. The changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. Overall, the percentage of crashes occurring on state highways increased. For all crashes, the increase was from 54 to 56 percent. For fatal, incapacitating, and non-incapacitating injury crashes, the increase was from 59 to 61 percent. For fatal crashes, the increase was from 74 to 76 percent. These percentages were higher for rural roads. For example, for rural CMV crashes, the percentage of crashes on state highways decreased slightly from 78 to 77 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 90 to 91 percent. For fatal crashes, it decreased slightly but stayed around 96 percent.

The research team calculated crash rates expressed both as the number of crashes per 100 million vehicle miles traveled (VMT) and number of crashes per 100 lane-miles. The results were similar with both approaches, although rates expressed as the number of crashes per 100 lane-miles were more stable particularly for roadway segments with low traffic volumes. In total, the crash rate decreased by 4 percent in the Barnett Shale region, increased by 7 percent in the Eagle Ford Shale region, and increased by 11 percent in the Permian Basin region. These changes were not uniform either by crash location and type of vehicles involved or by injury severity.

There were also significant differences geographically within each region. The changes were more prominent for rural crashes. The changes were even more prominent for crashes that involved CMVs and, in particular, for rural crashes that involved CMVs. In most cases, as the severity of the injuries worsened, the changes in the corresponding crash rate were more evident.

The research team established correlations by comparing pairs of metrics representing historical data aggregated at the county level (Table 1). In the Barnett Shale region, there was a strong correlation between the number of new horizontal wells and the number of crashes (regardless of location or type of vehicles involved). In the Eagle Ford Shale region, there was a strong correlation between the number of new horizontal wells and the number of rural CMV crashes. In the Permian Basin region, there was a strong correlation between the number of rural CMV crashes. It is worth noting that In the Permian Basin, although the relative change in the number of new vertical wells was considerably higher than for vertical wells, in absolute terms the number of new vertical wells was much higher than the number of new horizontal wells. Judging from the trends in the Eagle Ford Shale and Barnett Shale regions, as the industry shifts from vertical drilling to horizontal drilling in the Permian Basin, the correlation between new horizontal wells and rural CMV crashes in that part of the state will likely increase.

		Number	of New	Number	of New
		Horizon	tal Wells	Vertica	l Wells
	Number of Crashes		0 .56		-0.15
Barnett Shale	Number of Rural Crashes		0.62		-0.24
Region	Number of CMV-Involved Crashes		0.52		-0.19
	Number of Rural CMV-Involved Crashes		0.63		-0.10
	Number of Crashes		0.12		0.16
Eagle Ford	Number of Rural Crashes		-0.07		-0.22
Shale Region	Number of CMV-Involved Crashes		0.39		0.09
	Number of Rural CMV-Involved Crashes		0.57		-0.10
	Number of Crashes		-0.08		0.07
Permian	Number of Rural Crashes		0.03		0.33
Basin Region	Number of CMV-Involved Crashes		0.06		0.29
	Number of Rural CMV-Involved Crashes		0.23		0.47
	Number of Crashes		-0.04		-0.03
Remaining	Number of Rural Crashes		-0.03		0.00
Counties	Number of CMV-Involved Crashes		-0.02		-0.02
	Number of Rural CMV-Involved Crashes		0.00		0.06

Table 1. Pearson Correlation Coefficients.

In the Barnett Shale region, there was a very strong correlation between the *change* in the number of new horizontal wells and the *change* in the number of rural CMV crashes. In the Eagle Ford Shale region, the correlation between these two variables was also very strong. In the Permian Basin region, there was a strong correlation between the change in the number of new vertical wells and that of rural CMV crashes. The research team used this information to develop linear regression models (Figure 1) for county-level data from the Eagle Ford Shale, Barnett Shale, and Permian Basin regions that could be used for forecasting purposes in situations where other factors remain reasonably stable and there is a need for high-level estimates. These models suggest a generalized trend that could be used to estimate positive (or negative) changes in the number of rural CMV crashes in Texas as a function of the positive (or negative) change in the number of new horizontal wells.

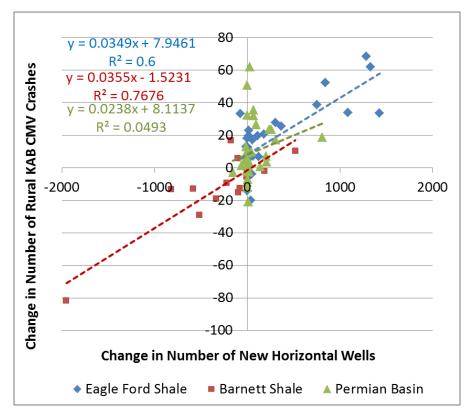


Figure 1. Change in the Number of Rural Fatal, Incapacitating, and Non-Incapacitating CMV Crashes vs. Change in the Number of Horizontal Wells.

The research team developed preliminary estimates of the change in the cost of injuries from 2006–2009 to 2010–2013 using standardized economic and comprehensive crash cost estimates from the National Safety Council (NSC) and comprehensive crash cost estimates from the U.S. Department of Transportation (DOT). Economic costs rely on calculable costs such as wage and productivity losses, medical expenses, administrative expenses, motor vehicle damage, and employers' uninsured costs). Comprehensive costs include economic cost components and a measure of the value of lost quality of life, which makes comprehensive costs appropriate to analyze the anticipated benefit of future improvements (because they provide a measure of what people would be willing to pay for improved safety). In general, the U.S. DOT's methodology for comprehensive cost estimates, which are based on a concept called the value of a statistical life (VSL), are considerably higher than those resulting from the NSC methodology.

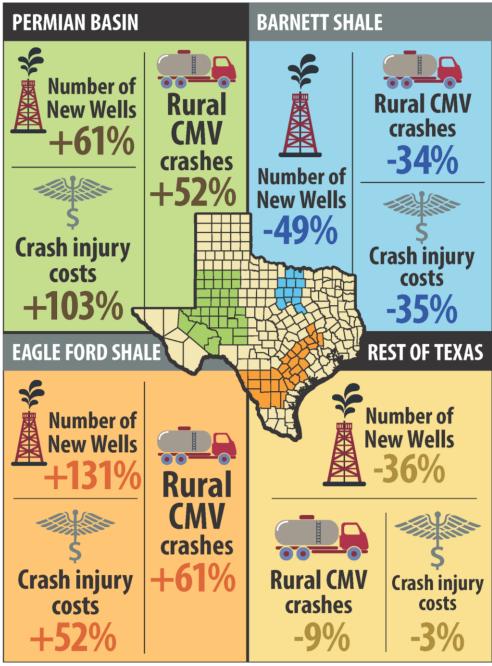
Table 2 summarizes the result of the analysis. Because the correlation between new completed wells and rural CMV crashes was stronger than for other types of crashes, the research team only included the number of injuries resulting from rural CMV crashes. Further, the research team only included the number of fatal, incapacitating, non-incapacitating, and possible injuries in the cost calculation. In the Barnett Shale region, there was a 35 percent decrease (i.e., \$73 million in economic costs or \$425 million in comprehensive costs) in NSC-based costs and a 30 percent decrease (i.e., \$763 million) in VSL-based comprehensive costs. The cost reduction was the result of fewer rural CMV crashes and, correspondingly, fewer injuries. In the Eagle Ford Shale

region, there was a 52 percent increase (i.e., \$139 million in economic costs or \$419 million in comprehensive costs) in NSC-based costs and a 68 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs. In the Permian Basin region, there was a 103 percent increase (i.e., \$176 million in economic costs or \$1.03 billion in comprehensive costs) in NSC-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs.

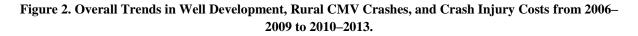
The huge increase in the cost of injuries resulting from rural CMV crashes in the Eagle Ford Shale and Permian Basin regions (covering 66 counties in total) was largely responsible for the net increase in the cost of injuries resulting from rural CMV crashes in the state from 2006–2009 to 2010–2013. As Table 2 shows, the net increase was 9 percent overall, even though there was a 35 percent reduction in the Barnett Shale region (covering 13 counties) and a 3 percent reduction in 175 other counties around the state.

Cost of Rural CMV Injuries (Million)												
Pagion	E	Economic Cost (NSC)			Comprehensive Cost (NSC)			Com	Comprehensive Cost (VSL)			
Region	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.
Barnett Shale	\$ 212	\$ 138	\$ (73)	-35%	\$ 1,224	\$ 799	\$ (425)	-35%	\$ 2,510	\$ 1,747	\$ (763)	-30%
Eagle Ford Shale	\$ 269	\$ 408	\$ 139	9 52%	\$ 1,548	\$ 2,349	\$ 801	52%	\$ 2,931	\$ 4,927	\$1,996	68%
Permian Basin	\$ 171	\$ 348	\$ 176	0103%	\$ 981	\$ 2,011	\$1,030	0105%	\$ 2,051	\$ 4,045	\$1,994	97%
Other	\$ 1,615	\$ 1,567	\$ (47)	-3%	\$ 9,229	\$ 8,988	\$ (241)	-3%	\$19,796	\$19,205	\$ (591)	-3%
Grand Total	\$ 2,266	\$ 2,461	\$ 194	9%	\$12,981	\$14,146	\$1,165	9%	\$27,288	\$29,924	\$2,636	🥚 10%

Table 2. Changes in Economic and Comprehensive Costs for Injuries Resulting from	Rural CMV Crashes.
--	--------------------


In practical terms, the research results mean the following (Figure 2):

- The number of crashes and resulting injuries increased along with oil and gas well development activities, but the changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region.
- The increases in the number of crashes and injuries were more prominent in rural areas where energy developments take place (i.e., Eagle Ford Shale and Permian Basin regions). The highest increase was in the case of rural CMV crashes. Overall, there was a strong correlation between rural CMV crashes and the number of new wells.
- The percentage of crashes on state highways increased. As the severity of the injuries increased, the percentage of crashes on state highways also increased. For rural CMV crashes, the percentage of crashes on state highways increased from 81 to 83 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 89 to 90 percent. For fatal crashes, it increased slightly but stayed around 95 percent.


The cost of injuries resulting from rural CMV crashes in energy development regions increased significantly and was largely responsible for the net increase in the cost of injuries resulting from rural CMV crashes in the state from 2006–2009 to 2010–2013. In the Eagle Ford Shale region, the increase was \$139 million in economic costs or \$419 million–\$2 billion in comprehensive costs. In the Permian Basin region, the increase was \$176 million in economic costs or \$1.03–2.0 billion in comprehensive costs. These costs are of the same order of magnitude as the impact of energy developments on the transportation infrastructure (estimated at \$1 billion per year on state highways and an additional \$1 billion on county and local roads).

The amount of drilling activity in a region affects vehicle crashes and crash costs.*

Comparison based on statewide data from 2006-2009 and 2010-2013

*SOURCES: Texas Railroad Commission, Texas Department of Transportation, and Texas A&M Transportation Institute

Chapter 1. Crash Data Collection and Processing

Introduction

In fall 2014, the Texas Legislature asked TTI to update a study completed in late 2011 documenting locations and trends of oil and gas energy developments in the state (1). As part of the study, the Texas Legislature asked TTI to correlate oil and gas developments with changes in pavement condition data. TTI summarized the results of this analysis in a report published in March 2015 (2).

To complement the study, the Texas Legislature asked TTI to gather and process crash data at a level of spatial and temporal detail needed to document locations and trends of crashes in relation to oil and gas energy developments in the state. The research team completed the following activities to document trends and changes in crash rates and to correlate this information with changes in oil and gas drilling developments:

- Request and process crash data from the Texas Department of Transportation (TxDOT).
- Analyze and correlate trends with oil and gas drilling developments.
- Prepare deliverables.

Figure 3 shows the location of counties associated with the Barnett Shale region (13 counties), Eagle Ford Shale region (29 counties), and Permian Basin region (37 counties) that were used in the March 2015 report to document changes in oil and gas well developments in the state. Of specific interest was to examine changes with respect to a pre-determined baseline. The research team used the end of 2009 for baseline and comparison purposes because this was when well drilling and oil production in the Eagle Ford Shale region began in earnest and when oil production in the Permian Basin began to accelerate. The last year in which the research team received reliable data from the Railroad Commission was 2013 (2014 data are still preliminary). In addition, the economic recession of 2008 caused significant volatility in the oil markets, which resulted in dramatic swings in prices, drilling, and production. In order to reduce the impact of these variations, the research team aggregated and compared data using two four-year blocks: 2006–2009 and 2010–2013.

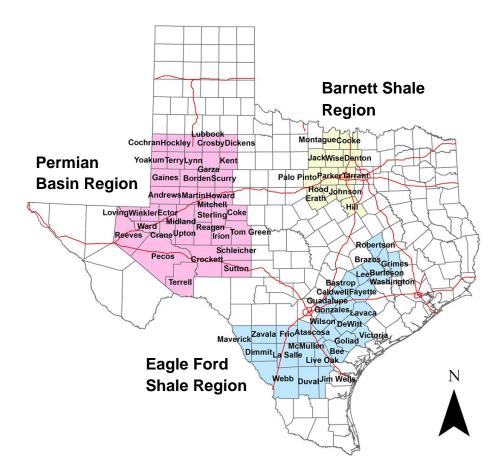


Figure 3. Counties Analyzed in the Eagle Ford Shale, Permian Basin, and Barnett Shale Regions.

Crash Data

The research team gathered and processed data from TxDOT's Crash Record Information System (CRIS) at a level of spatial and temporal detail needed to document locations and trends of crashes in relation to oil and gas energy developments in the state. Available data from CRIS covered the 2010–2014 period. The research team complemented this information with historical crash data from 2003–2009 that TTI had received from TxDOT before the introduction of CRIS.

Consistent with protocols between TTI and TxDOT for the release of historical crash data, the research team worked through a designated official at the TTI Traffic Safety Center to download and furnish relevant crash data. The focus was on crash locations and basic crash attribute data such as severity, number and type of vehicles involved, manner of collision, contributing factors, and type of roadway. The crash data available to the research team included generic information about the vehicles involved in crashes (such as vehicle type and vehicle body type), but not specific vehicle identifiable information. The data included information about the number of people injured in crashes (and the corresponding injury level, e.g., fatal, incapacitating injury,

non-incapacitating injury, possible injury, no injury, or unknown), but did not include identifiable information about those people.

Beginning with 2008, crash data records were sufficiently complete to conduct the analysis. Prior to 2008, there were gaps in certain data categories. Specifically, rural crashes, CMV crashes, and injuries (i.e., the number of people who were injured in crashes). The gaps were not uniform. For example, the number of rural crashes in CRIS was practically nonexistent from 2003–2005, but appeared to be reasonable for subsequent years. Likewise, the number of fatal CMV crashes in CRIS for 2006 and 2007 appeared to be reasonable, but the number of CMV crashes for other injury types during the same two years appeared to be much lower than what the historical trend would suggest (based on data from subsequent years). The number of CMV crashes in CRIS for 2005 was also practically nonexistent.

Because it was of interest to compare crash data for two four-year blocks (2006–2009 and 2010–2013) to enable a comparison with oil and gas well developments during the same periods, it was necessary to estimate missing CMV crash and injury data for 2006 and 2007. Fortunately, the CRIS data contained reliable information about vehicles that were involved in crashes. This record appeared reasonably complete for all the years of interest. Based on this information, the process to estimate missing CMV crash and injury data was as follows:

- Determine the number of trucks (i.e., the number of CMVs) that were involved in crashes in 2008. The research team classified the following vehicle types as trucks: truck and trailer, semi-trailer, mobile home, other truck combinations, farm tractor, road machinery, and other machinery.
- Determine the ratio of number of crashes in 2008 to the number of CMVs in 2008. For accuracy, the research team determined a separate ratio for crashes according to severity (i.e., fatal, incapacitating injury, non-incapacitating injury, possible injury, no injury, or unknown) and according to region (i.e., Barnett Shale, Eagle Ford, Permian Basin, and other).
- Estimate the number of CMV crashes in 2006 and 2007 by dividing the number of crashes in 2006 and 2007 by the corresponding ratio of number of crashes in 2008 to the number of CMVs in 2008. This process resulted in four estimated sets of CMV crashes for 2006 and 2007.
- Determine the ratio of number of injuries in CMV-related crashes in 2008 to the number of CMVs in 2008. For accuracy, the research team determined a separate ratio for injuries according to severity (i.e., fatal, incapacitating injury, non-incapacitating injury, possible injury, no injury, or unknown) and according to region (i.e., Barnett Shale, Eagle Ford, Permian Basin, and other).

• Estimate the number of injuries in 2006 and 2007 by dividing the number of injuries in 2006 and 2007 by the corresponding ratio of number of injuries in 2008 to the number of CMVs in 2008. This process resulted in four estimated sets of injuries for 2006 and 2007.

Table 3 through Table 18 summarize the result of the crash data compilation, as follows:

- Number of crashes:
 - Table 3: Number of crashes.
 - Table 4: Number of rural crashes.
 - Table 5: Number of CMV crashes.
 - Table 6: Number of rural CMV crashes.
 - Table 7: Number of crashes on state highways.
 - Table 8: Number of crashes on rural state highways.
 - Table 9: Number of CMV crashes on state highways.
 - Table 10: Number of CMV crashes on rural state highways.
- Number of injuries:
 - Table 11: Number of injuries.
 - Table 12: Number of injuries in rural crashes.
 - Table 13: Number of injuries in CMV crashes.
 - Table 14: Number of injuries in rural CMV crashes.
 - Table 15: Number of injuries in crashes on state highways.
 - Table 16: Number of injuries in crashes on rural state highways.
 - Table 17: Number of injuries in CMV crashes on state highways.
 - Table 18: Number of injuries in CMV crashes on rural state highways.

In these tables, a rural crash is a crash that occurs on a roadway outside city limits. An on-system crash is a crash that occurs on a state highway. A rural on-system crash is a crash that occurs on a state highway outside city limits. Years marked with a '*' (i.e., 2006 and 2007) correspond to CMV crashes or injuries that were estimated following the procedure described above.

	Number of Crashes - Statewide											
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal				
2006	3,118	13,596	50,480	108,914	243,094	17,985	437,187					
2007	3,101	13,250	51,178	107,870	263,334	19,252	457,985	1,762,497				
2008	3,126	12,562	49,652	97,538	257,155	18,962	438,995	1,702,497				
2009	2,821	11,466	47,425	95,798	251,891	18,929	428,330					
2010	2,781	11,813	48,394	81,658	234,050	12,880	391,576					
2011	2,803	11,753	46,570	81,321	228,491	12,706	383,644	1 627 470				
2012	3,037	12,870	50,836	88,583	247,674	14,014	417,014	1,637,478				
2013	3,054	13,436	52,205	88,799	272,579	15,171	445,244					

Table 3. Number of Crashes.

	Number of Crashes - Eagle Ford Shale Region									
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal		
2006	224	732	2,678	4,098	12,642	707	21,081			
2007	211	690	2,770	4,118	13,533	778	22,100	85,964		
2008	218	695	2,754	3,788	13,660	832	21,947	65,904		
2009	198	686	2,526	3,698	13,044	684	20,836			
2010	188	693	2,595	3,432	12,737	538	20,183			
2011	204	741	2,826	3,756	13,051	579	21,157	86,744		
2012	274	804	2,866	4,089	13,820	619	22,472	00,744		
2013	236	840	2,997	4,031	14,201	627	22,932			

	Number of Crashes - Barnett Shale Region										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal			
2006	311	1,738	6,003	11,126	24,324	1,879	45,381				
2007	320	1,769	6,429	10,935	27,132	2,067	48,652	184,735			
2008	294	1,667	5,891	9,821	26,063	2,090	45,826	104,733			
2009	277	1,500	5,540	9,515	25,954	2,090	44,876				
2010	251	1,598	5,705	8,309	23,128	1,359	40,350				
2011	257	1,552	5,471	8,166	22,351	1,312	39,109	100 474			
2012	263	1,658	5,923	8,534	24,185	1,241	41,804	166,474			
2013	259	1,650	6,141	8,742	26,967	1,452	45,211				

		Region	ian Basin	nes - Perm	er of Crash	Numbe		
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	19,526	836	11,710	4,166	2,144	499	171	2006
80,891	20,865	725	12,945	4,185	2,326	532	152	2007
00,091	20,311	1,059	12,149	4,161	2,292	476	174	2008
	20,189	1,201	12,198	4,036	2,193	410	151	2009
	17,687	443	11,099	3,478	2,090	410	167	2010
77 544	18,019	651	10,821	3,662	2,238	478	169	2011
77,511	20,291	889	12,198	4,066	2,408	525	205	2012
	21,514	922	13,059	4,204	2,479	602	248	2013

Number of Crashes - Remaining Counties										
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year		
	351,199	14,563	194,418	89,524	39,655	10,627	2,412	2006		
1,410,907	366,368	15,682	209,724	88,632	39,653	10,259	2,418	2007		
	350,911	14,981	205,283	79,768	38,715	9,724	2,440	2008		
	342,429	14,954	200,695	78,549	37,166	8,870	2,195	2009		
1	313,356	10,540	187,086	66,439	38,004	9,112	2,175	2010		
1 206 740	305,359	10,164	182,268	65,737	36,035	8,982	2,173	2011		
1,306,749	332,447	11,265	197,471	71,894	39,639	9,883	2,295	2012		
	355,587	12,170	218,352	71,822	40,588	10,344	2,311	2013		

Table 4.	Number	of Rural	Crashes.
----------	--------	----------	----------

		Nun	nber of Ru	iral Crashe	es - Statev	vide			
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	Total		
2006	1,642	4,798	12,831	15,938	51,326	2,744	89,279		
2007	1,610	4,529	12,773	16,079	55,654	2,968	93,613	356,636	
2008	1,542	4,212	12,654	14,658	52,876	3,192	89,134	550,050	
2009	1,397	3,887	11,497	13,782	51,124	2,923	84,610		
2010	1,358	3,895	11,878	12,273	51,719	2,263	83,386		
2011	1,390	3,978	11,242	12,430	50,202	1,936	81,178	240 102	
2012	1,543	4,188	11,863	13,850	54,614	2,209	88,267	349,182	
2013	1,539	4,661	12,225	14,034	61,377	2,515	96,351		

	Ν	umber of	Rural Cra	shes - Eag	le Ford Sł	nale Regio	n	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006	162	447	1,230	1,058	4,084	208	7,189	
2007	165	392	1,228	1,068	4,308	212	7,373	27,660
2008	161	378	1,173	918	4,003	250	6,883	27,000
2009	141	383	1,029	936	3,549	177	6,215	
2010	138	363	964	885	3,752	158	6,260	
2011	162	423	1,105	946	3,854	151	6,641	28,804
2012	217	477	1,176	1,182	4,575	187	7,814	20,004
2013	177	530	1,216	1,170	4,814	182	8,089	

		Number o	of Rural Cr	ashes - Ba	rnett Sha	le Region		
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006	119	405	880	877	3,622	181	6,084	
2007	118	383	883	898	4,326	214	6,822	24,572
2008	126	378	924	867	3,928	233	6,456	24,572
2009	96	292	742	658	3,247	175	5,210	
2010	83	243	699	565	2,925	125	4,640	
2011	70	281	682	519	2,837	98	4,487	10 521
2012	91	271	695	542	2,872	113	4,584	18,521
2013	81	260	709	482	3,167	111	4,810	

	า	sin Regior	rmian Ba	ashes - Pe	f Rural Cr	Number o		
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	3,858	100	2,202	577	633	226	120	2006
15,689	4,329	80	2,607	609	707	216	110	2007
15,005	3,936	105	2,328	523	663	214	103	2008
	3,566	88	2,129	500	584	168	97	2009
	3,447	65	2,104	360	670	152	96	2010
17 420	3,880	49	2,329	515	657	215	115	2011
17,426	4,660	65	2,813	610	780	253	139	2012
]	5,439	92	3,339	561	922	357	168	2013

		Counties	emaining	rashes - R	of Rural C	Number		
Fotal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
3	72,148	2,255	41,418	13,426	10,088	3,720	1,241	2006
9 288,715	75,089	2,462	44,413	13,504	9,955	3,538	1,217	2007
	71,859	2,604	42,617	12,350	9,894	3,242	1,152	2008
9	69,619	2,483	42,199	11,688	9,142	3,044	1,063	2009
Ð	69,039	1,915	42,938	10,463	9,545	3,137	1,041	2010
)	66,170	1,638	41,182	10,450	8,798	3,059	1,043	2011
284,431	71,209	1,844	44,354	11,516	9,212	3,187	1,096	2012
3	78,013	2,130	50,057	11,821	9,378	3,514	1,113	2013

Table 5. Number of CMV Crashe

		Nur	nber of CN	MV Crashe	s - Statev	vide		
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006*	409	976	2,927	5,553	18,624	483	28,972	
2007*	440	998	3,076	5,754	21,120	443	31,831	115,582
2008	432	925	3,005	5,088	20,021	304	29,775	115,562
2009	301	743	2,439	4,367	16,900	254	25,004	
2010	393	891	2,731	4,097	16,653	133	24,898	
2011	381	825	2,584	3,883	16,451	144	24,268	105 100
2012	462	922	2,831	4,207	17,972	163	26,557	105,198
2013	456	1,073	3,063	4,279	20,402	202	29,475	

	Ν	lumber of	CMV Cra	shes - Eag	le Ford Sh	ale Regio	n	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006*	33	38	209	197	1,122	40	1,639	
2007*	28	43	220	228	1,322	28	1,870	6,607
2008	34	73	177	213	1,236	17	1,750	0,007
2009	34	46	160	169	923	16	1,348	
2010	27	82	202	209	1,114	7	1,641	
2011	40	86	227	263	1,290	17	1,923	8,708
2012	73	105	275	320	1,670	17	2,460	8,708
2013	64	127	333	368	1,778	14	2,684	

		Number o	of CMV Cr	ashes - Ba	rnett Sha	le Region		
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006*	38	132	343	596	2,149	66	3,323	
2007*	55	127	408	621	2,732	47	3,989	14,119
2008	49	145	387	559	2,675	47	3,862	14,119
2009	39	120	282	429	2,043	32	2,945	
2010	40	107	329	418	2,065	17	2,976	
2011	31	103	285	409	2,090	13	2,931	12 267
2012	33	129	301	401	2,156	15	3,035	12,367
2013	31	105	352	431	2,486	20	3,425	

		Number o	of CMV Cra	ashes - Pe	rmian Bas	in Region	1	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006*	27	39	132	149	704	19	1,069	
2007*	28	52	170	202	912	8	1,372	4,775
2008	23	48	165	194	849	14	1,293	4,775
2009	16	34	149	140	692	10	1,041	
2010	26	38	156	136	846	6	1,208	
2011	40	63	193	179	908	10	1,393	c 200
2012	57	83	217	223	1,145	4	1,729	6,368
2013	60	117	283	221	1,346	11	2,038	

		Counties	emaining	rashes - R	of CMV C	Number		
Total	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
L	22,941	360	14,649	4,611	2,244	766	311	2006*
90,08	24,600	360	16,154	4,703	2,279	776	328	2007*
	22,870	226	15,261	4,122	2,276	659	326	2008
ז	19,670	196	13,242	3,629	1,848	543	212	2009
3	19,073	103	12,628	3,334	2,044	664	300	2010
	18,021	104	12,163	3,032	1,879	573	270	2011
77,75 3	19,333	127	13,001	3,263	2,038	605	299	2012
3	21,328	157	14,792	3,259	2,095	724	301	2013

Number of Rural CMV Crashes - Statewide										
tal	To	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year		
	8,387	85	5,437	1,130	1,069	415	250	2006*		
34,635	9,747	109	6,380	1,349	1,226	420	263	2007*		
34,035	9,175	50	6,020	1,233	1,189	421	262	2008		
L	7,326	37	4,865	1,021	927	305	171	2009		
	7,640	22	5,014	937	1,032	412	223	2010		
24 200	7,895	31	5,257	944	1,032	396	235	2011		
34,288	8,724	23	5,756	1,096	1,106	443	300	2012		
l	10,029	24	6,636	1,179	1,313	558	319	2013		

Table 6. Number of Rural CM	AV Crashes.
-----------------------------	--------------------

	Number of Rural CMV Crashes - Eagle Ford Shale Region									
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal		
2006*	27	22	115	77	423	16	679			
2007*	24	26	123	103	528	12	816	2,820		
2008	25	54	106	71	482	2	740	2,020		
2009	26	29	85	77	368	-	585			
2010	22	55	114	87	439	2	719			
2011	37	64	163	111	578	6	959	4,542		
2012	64	85	186	173	823	7	1,338	4,542		
2013	56	95	232	217	921	5	1,526			

Number of Rural CMV Crashes - Barnett Shale Region									
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal	
2006*	24	51	87	85	490	5	742		
2007*	24	41	109	102	638	11	925	2 120	
2008	35	57	108	103	650	3	956	3,130	
2009	17	27	61	54	347	1	507		
2010	18	28	73	38	324	-	481		
2011	11	34	66	41	352	2	506	2 004	
2012	14	37	63	38	364	-	516	2,061	
2013	20	22	88	47	380	1	558		

Number of Rural CMV Crashes - Permian Basin Region										
tal	To	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year		
	576	6	348	74	103	24	21	2006*		
2,464	722	1	451	89	125	31	25	2007*		
2,404	664	3	426	83	101	31	20	2008		
	502	2	314	51	94	27	14	2009		
	609	1	408	56	98	25	21	2010		
2 742	824	1	513	94	135	48	33	2011		
3,743	1,043	1	663	118	154	62	45	2012		
	1,267	2	809	106	202	96	52	2013		

	Number of Rural CMV Crashes - Remaining Counties										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal			
2006*	178	319	764	895	4,177	58	6,390				
2007*	190	323	868	1,056	4,763	85	7,284	76 771			
2008	182	279	874	976	4,462	42	6,815	26,221			
2009	114	222	687	839	3,836	34	5,732				
2010	162	304	747	756	3,843	19	5,831				
2011	154	250	668	698	3,814	22	5,606	22.042			
2012	177	259	703	767	3,906	15	5,827	23,942			
2013	191	345	791	809	4,526	16	6,678				

	Number of On-System Crashes - Statewide										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal			
2006	2,277	8,112	27,954	56,602	128,073	4,371	227,389				
2007	2,285	7,828	28,554	56,382	139,734	4,686	239,469	021 270			
2008	2,267	7,491	27,257	51,376	135,906	4,192	228,489	921,379			
2009	2,037	6,921	26,496	51,213	135,191	4,174	226,032				
2010	2,068	7,396	28,007	45,509	129,438	2,864	215,282				
2011	2,077	7,306	26,960	45,062	125,877	2,740	210,022	007 (71			
2012	2,244	7,972	29,020	49,141	136,608	3,060	228,045	897,671			
2013	2,303	8,485	30,096	48,968	151,109	3,361	244,322				

Table 7. Number of Crashes on State Highways.

	Number of On-System Crashes - Eagle Ford Shale Region									
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal		
2006	196	559	1,859	2,643	7,914	222	13,393			
2007	182	520	1,860	2,623	8,313	232	13,730	54,020		
2008	179	523	1,842	2,428	8,459	234	13,665	54,020		
2009	165	511	1,726	2,537	8,125	168	13,232			
2010	160	529	1,792	2,315	8,245	138	13,179			
2011	184	595	1,980	2,547	8,563	160	14,029	58,201		
2012	241	646	2,025	2,818	9,286	169	15,185	56,201		
2013	207	678	2,171	2,767	9,809	176	15,808			

Number of On-System Crashes - Barnett Shale Region									
Total	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year	
92	24,892	445	13,562	6,158	3,435	1,060	232	2006	
41 101,78	26,741	493	15,206	6,055	3,711	1,033	243	2007	
27	25,127	467	14,565	5,503	3,352	1,026	214	2008	
29	25,029	435	14,797	5,467	3,215	917	198	2009	
19	23,719	277	13,844	5,002	3,442	964	190	2010	
14 07.52	22,914	241	13,364	4,822	3,311	980	196	2011	
97,52 37	24,537	241	14,395	5,166	3,520	1,025	190	2012	
58	26,358	294	15,955	5,161	3,729	1,034	185	2013	

	Number of On-System Crashes - Permian Basin Region									
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year		
	9,388	149	5,584	2,070	1,158	295	132	2006		
38,703	10,314	106	6,410	2,075	1,299	315	109	2007		
50,705	9,544	172	5,684	2,027	1,241	299	121	2008		
	9,457	163	5,845	1,933	1,142	254	120	2009		
	9,299	71	5,774	1,780	1,271	272	131	2010		
42.040	9,926	90	5,973	2,030	1,350	344	139	2011		
43,040	11,285	128	6,822	2,326	1,474	362	173	2012		
]	12,530	148	7,699	2,400	1,630	449	204	2013		

Number of On-System Crashes - Remaining Counties									
Total	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year	
5	179,716	3,555	101,013	45,731	21,502	6,198	1,717	2006	
4 726,86	188,684	3,855	109,805	45,629	21,684	5,960	1,751	2007	
	180,153	3,319	107,198	41,418	20,822	5,643	1,753	2008	
4	178,314	3,408	106,424	41,276	20,413	5,239	1,554	2009	
5	169,085	2,378	101,575	36,412	21,502	5,631	1,587	2010	
3	163,153	2,249	97,977	35,663	20,319	5,387	1,558	2011	
698,90 8	177,038	2,522	106,105	38,831	22,001	5,939	1,640	2012	
6	189,626	2,743	117,646	38,640	22,566	6,324	1,707	2013	

	Number of Rural On-System Crashes - Statewide											
otal	То	Year Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown						Year				
	58,480	969	33,306	10,405	8,973	3,494	1,333	2006				
231,933	61,791	1,086	36,406	10,593	9,058	3,321	1,327	2007				
251,955	57,532	1,106	33,859	9,558	8,715	3,045	1,249	2008				
	54,130	955	32,467	8,873	7,956	2,754	1,125	2009				
	53,080	692	32,360	7,857	8,200	2,873	1,098	2010				
222 457	51,673	584	31,492	7,843	7,786	2,846	1,122	2011				
222,457	56,476	729	34,330	8,774	8,231	3,152	1,260	2012				
	61,228	812	38,310	8,733	8,541	3,564	1,268	2013				

Table 8. Number of Crashes on Rural State Highways.

	Number of Rural On-System Crashes - Eagle Ford Shale Region											
Year	Year Fatal Incapacit.			Possible Inj.	No Injury	Unknown	То	tal				
2006	145	376	1,013	859	3,228	129	5,750					
2007	153	328	996	873	3,371	124	5,845	21,974				
2008	140	321	926	738	3,163	133	5,421	21,574				
2009	126	317	843	777	2,811	84	4,958					
2010	121	313	799	730	3,014	78	5,055					
2011	150	371	938	811	3,195	85	5,550	23,975				
2012	196	416	1,004	997	3,793	112	6,518	23,373				
2013	160	474	1,044	998	4,065	111	6,852					

	Number of Rural On-System Crashes - Barnett Shale Region											
Year	rr Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Total					tal						
2006	92	296	606	611	2,418	59	4,082					
2007	97	273	630	597	2,850	80	4,527	16,179				
2008	104	283	636	579	2,551	82	4,235	10,179				
2009	76	194	511	451	2,061	42	3,335					
2010	71	171	482	376	1,935	35	3,070					
2011	59	195	481	373	1,874	29	3,011	12 522				
2012	75	227	459	377	1,922	38	3,098	12,523				
2013	63	205	510	339	2,186	41	3,344					

	Number of Rural On-System Crashes - Permian Basin Region											
otal	ar Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown To				Year							
	2,980	36	1,695	455	523	173	98	2006				
12,046	3,392	30	2,064	478	565	165	90	2007				
	2,936	46	1,704	411	521	173	81	2008				
	2,738	41	1,643	384	452	132	86	2009				
	2,670	23	1,633	281	524	131	78	2010				
	3,125	20	1,871	404	537	190	103	2011				
14,114	3,807	28	2,302	501	631	220	125	2012				
7	4,512	47	2,756	473	777	311	148	2013				

Number of Rural On-System Crashes - Remaining Counties											
Year Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown					To	tal					
2006	998	2,649	6,831	8,480	25,965	745	45,668				
2007	987	2,555	6,867	8,645	28,121	852	48,027	181,734			
2008	924	2,268	6,632	7,830	26,441	845	44,940	101,734			
2009	837	2,111	6,150	7,261	25,952	788	43,099				
2010	828	2,258	6,395	6,470	25,778	556	42,285				
2011	810	2,090	5,830	6,255	24,552	450	39,987	171 045			
2012	864	2,289	6,137	6,899	26,313	551	43,053	171,845			
2013	897	2,574	6,210	6,923	29,303	613	46,520				

	Number of CMV On-System Crashes - Statewide											
Year	r Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown					То	tal					
2006*	373	786	2,185	3,625	12,282	215	19,465					
2007*	394	804	2,341	3,849	14,017	198	21,603	79,132				
2008	385	737	2,283	3,503	13,549	131	20,588	79,132				
2009	276	580	1,902	3,076	11,553	89	17,476					
2010	348	746	2,157	2,943	11,736	50	17,980					
2011	356	691	2,063	2,776	11,740	65	17,691	77 270				
2012	414	764	2,290	3,086	13,011	70	19,635	77,270				
2013	421	920	2,524	3,269	14,747	83	21,964					

Table 9. Number	of CMV	Crashes on	State	Highways.

	Number of CMV On-System Crashes - Eagle Ford Shale Region											
Year	Year Fatal Incapacit			Possible Inj.	No Injury	Unknown	То	tal				
2006*	33	32	183	160	809	10	1,226					
2007*	28	39	198	175	942	9	1,391	4,979				
2008	30	69	156	159	882	1	1,297	4,575				
2009	33	40	134	149	705	4	1,065					
2010	26	75	168	175	838	5	1,287					
2011	40	78	206	226	1,000	10	1,560	7,186				
2012	71	100	249	286	1,351	8	2,065	7,100				
2013	62	119	309	325	1,455	4	2,274					

	Number of CMV On-System Crashes - Barnett Shale Region											
Year	r Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Total					tal						
2006*	36	112	259	437	1,466	36	2,346					
2007*	50	101	324	432	1,840	20	2,768	10,010				
2008	46	114	296	413	1,882	23	2,774	10,010				
2009	35	89	213	328	1,444	13	2,122					
2010	35	83	257	334	1,486	7	2,202					
2011	30	83	234	304	1,539	4	2,194	0.270				
2012	28	110	236	310	1,605	4	2,293	9,278				
2013	29	87	291	339	1,834	9	2,589					

	egion	an Basin R	s - Permia	em Crashe	/ On-Syste	er of CM	Numb	
tal	Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Tota			Year				
	816	9	511	122	113	33	29	2006*
3,645	1,068	1	687	163	143	45	29	2007*
5,045	989	6	636	149	132	45	21	2008
	772	5	495	109	120	28	15	2009
	939	1	645	107	126	36	24	2010
F 100	1,128	5	721	139	168	56	39	2011
5,189	1,403	3	918	176	178	74	54	2012
	1,719	6	1,125	177	248	108	55	2013

	Number of CMV On-System Crashes - Remaining Counties											
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal				
2006*	277	609	1,629	2,906	9,496	161	15,077					
2007*	288	618	1,676	3,078	10,548	168	16,376	60,499				
2008	288	509	1,699	2,782	10,149	101	15,528	00,499				
2009	193	423	1,435	2,490	8,909	67	13,517					
2010	263	552	1,606	2,327	8,767	37	13,552					
2011	247	474	1,455	2,107	8,480	46	12,809	FF (17				
2012	261	480	1,627	2,314	9,137	55	13,874	55,617				
2013	275	606	1,676	2,428	10,333	64	15,382					

	Number of Rural CMV On-System Crashes - Statewide											
Year	Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown				То	tal						
2006*	240	366	930	891	4,281	49	6,757					
2007*	252	380	1,074	1,091	5,086	71	7,955	28,178				
2008	241	383	1,032	986	4,843	29	7,514	20,170				
2009	164	267	832	830	3,846	12	5,951					
2010	208	377	911	767	4,039	12	6,314					
2011	230	357	911	760	4,291	16	6,565	20 500				
2012	286	397	981	901	4,694	16	7,275	28,598				
2013	304	523	1,178	1,001	5,425	13	8,444					

Table 10. Number of CMV Crashes on Rural State Highways.

1	Number of Rural CMV On-System Crashes - Eagle Ford Shale Region											
tal	To	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year				
	601	7	370	67	112	19	26	2006*				
2,556	740	6	472	92	122	25	24	2007*				
2,550	672	-	435	59	103	52	23	2008				
	543	-	336	74	80	27	26	2009				
	673	2	409	83	105	52	22	2010				
4.259	891	4	531	106	155	58	37	2011				
4,235	1,249	6	759	168	173	81	62	2012				
]	1,446	4	858	207	227	95	55	2013				

	Number of Rural CMV On-System Crashes - Barnett Shale Region											
Year	Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Tota				al							
2006*	22	49	71	69	394	2	607					
2007*	24	35	102	81	501	6	750	2,525				
2008	33	51	97	80	510	1	772	2,525				
2009	16	21	53	43	263	-	396					
2010	15	28	61	33	251	-	388					
2011	11	28	60	37	294	1	431	4 745				
2012	13	37	55	32	305	-	442	1,745				
2013	19	21	80	38	325	1	484					

	Number of Rural CMV On-System Crashes - Permian Basin Region											
tal	To	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year				
	498	2	291	68	94	20	23	2006*				
2,189	649	1	408	76	110	28	26	2007*				
2,109	591	2	380	74	87	30	18	2008				
	452	1	280	46	86	25	14	2009				
	552	1	366	50	91	24	20	2010				
2 204	738	1	458	85	119	43	32	2011				
3,384	938	1	599	106	133	56	43	2012				
	1,156	1	738	97	183	90	47	2013				

	Number of Rural CMV On-System Crashes - Remaining Counties											
Year	Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown To		tal									
2006*	169	278	652	687	3,227	38	5,052					
2007*	178	293	740	842	3,705	58	5,816	20,907				
2008	167	250	745	773	3,518	26	5,479	20,907				
2009	108	194	613	667	2,967	11	4,560					
2010	151	273	654	601	3,013	9	4,701					
2011	150	228	577	532	3,008	10	4,505	10 210				
2012	168	223	620	595	3,031	9	4,646	19,210				
2013	183	317	688	659	3,504	7	5,358					

Number of Injuries - Statewide										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal		
2006	3,521	17,554	71,621	181,886	842,887	135,295	1,252,764			
2007	3,466	17,070	71,995	176,948	888,654	139,775	1,297,908	4,991,605		
2008	3,487	15,901	68,940	158,689	860,395	127,651	1,235,063	4,551,005		
2009	3,122	14,569	65,648	154,502	844,813	123,216	1,205,870			
2010	3,060	15,275	68,212	134,417	795,341	49,512	1,065,817			
2011	3,067	14,787	65,386	132,509	772,926	48,029	1,036,704	4 426 206		
2012	3,417	16,196	71,067	143,678	841,395	53,947	1,129,700	4,426,286		
2013	3,396	16,807	72,622	143,143	897,798	60,299	1,194,065			

Table 11. Number of Injuries.

	Number of Injuries - Eagle Ford Shale Region											
Year	Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Tota			tal								
2006	271	1,030	3,987	7,055	41,736	5,920	59,999					
2007	247	956	4,149	6,715	43,775	6,316	62,158	241,484				
2008	258	917	4,088	6,209	44,203	5,720	61,395	241,404				
2009	226	887	3,621	6,090	42,084	5,024	57,932					
2010	219	953	3,802	5,612	42,313	1,540	54,439					
2011	235	981	4,156	6,233	43,101	1,596	56,302	230,497				
2012	329	1,104	4,285	6,882	45,204	1,687	59,491	230,497				
2013	264	1,137	4,480	6,731	45,933	1,720	60,265					

Number of Injuries - Barnett Shale Region											
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal			
2006	332	2,163	8,356	18,280	85,891	14,446	129,468				
2007	350	2,213	8,848	17,797	92,987	15,394	137,589	521,304			
2008	314	2,061	7,988	15,708	88,461	14,389	128,921	521,504			
2009	298	1,840	7,582	14,932	87,049	13,625	125,326				
2010	276	2,021	7,888	13,651	79,987	5,432	109,255				
2011	285	1,923	7,578	13,294	76,437	5,118	104,635	446.000			
2012	278	2,047	7,923	13,243	84,158	5,235	112,884	446,866			
2013	286	2,056	8,358	13,583	89,964	5,845	120,092				

	Number of Injuries - Permian Basin Region											
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year				
	55,342	5,279	39,239	6,918	3,053	654	199	2006				
225,483	58,759	5,549	42,197	6,883	3,275	680	175	2007				
225,405	56,298	5,980	39,632	6,684	3,182	628	192	2008				
	55,084	6,046	38,813	6,559	2,993	501	172	2009				
	47,381	1,119	36,766	5,774	2,982	550	190	2010				
202 170	46,833	1,680	35,391	5,892	3,070	607	193	2011				
202,170	52,750	2,281	39,545	6,626	3,352	696	250	2012				
	55,206	2,478	41,261	6,842	3,568	776	281	2013				

	Number of Injuries - Remaining Counties											
Fotal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year				
5	1,007,955	109,650	676,021	149,633	56,225	13,707	2,719	2006				
2 4,003,334	1,039,402	112,516	709,695	145,553	55,723	13,221	2,694	2007				
	988,449	101,562	688,099	130,088	53,682	12,295	2,723	2008				
3	967,528	98,521	676,867	126,921	51,452	11,341	2,426	2009				
2	854,742	41,421	636,275	109,380	53,540	11,751	2,375	2010				
1 2 546 752	828,934	39,635	617,997	107,090	50,582	11,276	2,354	2011				
3,546,753	904,575	44,744	672,488	116,927	55,507	12,349	2,560	2012				
2	958,502	50,256	720,640	115,987	56,216	12,838	2,565	2013				

Number of Rural Injuries - Statewide											
ear	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal			
006	1,908	6,585	19,028	27,065	149,280	24,442	228,308				
007	1,855	6,214	19,010	26,758	157,998	25,570	237,405	897,571			
800	1,759	5,710	18,359	24,251	149,636	22,899	222,614	057,571			
009	1,586	5,293	16,739	22,343	143,096	20,187	209,244				
010	1,531	5,318	17,378	20,065	147,016	6,288	197,596				
011	1,563	5,311	16,460	19,984	142,575	5,630	191,523	020.002			
012	1,785	5,676	17,489	22,634	157,466	6,201	211,251	830,063			
013	1,766	6,190	17,988	22,677	173,598	7,474	229,693				

	Number of Rural Injuries - Eagle Ford Shale Region											
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal				
2006	204	649	1,906	1,942	10,460	1,754	16,915					
2007	198	586	1,921	1,823	10,693	1,851	17,072	63,650				
2008	198	525	1,796	1,601	10,036	1,684	15,840	05,050				
2009	163	511	1,550	1,602	8,731	1,266	13,823					
2010	167	541	1,502	1,450	9,641	356	13,657					
2011	188	577	1,685	1,509	9,632	335	13,926	61,679				
2012	269	684	1,820	2,037	11,496	463	16,769	01,079				
2013	201	748	1,875	2,028	12,007	468	17,327					

Number of Rural Injuries - Barnett Shale Region											
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year			
	14,658	1,782	9,595	1,400	1,252	504	125	2006			
58,038	16,345	1,984	11,047	1,387	1,294	499	134	2007			
50,050	15,482	1,806	10,446	1,277	1,319	498	136	2008			
	11,553	1,124	7,877	1,028	1,038	382	104	2009			
	9,513	273	7,041	854	940	313	92	2010			
20.001	9,295	220	6,842	835	955	362	81	2011			
38,861	9,969	247	7,473	832	963	356	98	2012			
	10,084	224	7,664	747	1,005	351	93	2013			

	1	sin Region	rmian Bas	juries - Pe	of Rural Inj	Number o		
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	9,410	1,097	5,777	1,062	996	334	144	2006
37,286	10,502	1,305	6,573	1,109	1,085	299	131	2007
57,200	9,250	1,143	5,826	886	983	301	111	2008
	8,124	920	5,126	871	871	223	113	2009
	7,377	154	5,211	647	1,028	227	110	2010
27 700	8,260	133	5,924	798	976	292	137	2011
37,788	10,187	171	7,227	1,094	1,154	367	174	2012
	11,964	258	8,560	979	1,485	484	198	2013

Number of Rural Injuries - Remaining Counties											
otal	r Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown To				Year						
j	187,325	19,809	123,448	22,661	14,874	5,098	1,435	2006			
738,59	193,486	20,430	129,685	22,439	14,710	4,830	1,392	2007			
	182,042	18,266	123,328	20,487	14,261	4,386	1,314	2008			
,	175,744	16,877	121,362	18,842	13,280	4,177	1,206	2009			
)	167,049	5,505	125,123	17,114	13,908	4,237	1,162	2010			
C01 73	160,042	4,942	120,177	16,842	12,844	4,080	1,157	2011			
691,73	174,326	5,320	131,270	18,671	13,552	4,269	1,244	2012			
;	190,318	6,524	145,367	18,923	13,623	4,607	1,274	2013			

	Number of CMV Injuries - Statewide											
Year	ear Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Tot						tal					
2006*	497	1,304	4,241	9,572	69,644	41,090	126,347					
2007*	532	1,333	4,448	9,913	78,876	37,751	132,854	472,946				
2008	525	1,235	4,341	8,765	74,778	25,711	115,355	472,540				
2009	352	966	3,453	7,176	65,273	21,169	98,389					
2010	453	1,164	4,065	7,171	66,079	1,877	80,809					
2011	422	1,052	3,738	6,653	63,438	1,946	77,249	222 750				
2012	528	1,193	4,119	7,232	69,283	1,926	84,281	332,759				
2013	534	1,418	4,404	7,249	74,396	2,419	90,420					

Table 13	. Number	of Injuries	in CMV	Crashes.
----------	----------	-------------	--------	----------

	Number of CMV Injuries - Eagle Ford Shale Region												
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	known Tota						
2006*	44	55	334	371	3,884	3,729	8,417						
2007*	37	62	352	429	4,578	2,663	8,121	28,518					
2008	45	105	283	401	4,279	1,598	6,711	20,510					
2009	43	62	232	277	3,424	1,231	5,269						
2010	33	101	342	359	4,087	68	4,990						
2011	46	115	364	428	4,528	83	5,564	24.812					
2012	86	139	444	551	5,402	107	6,729	24,012					
2013	72	169	474	643	6,049	122	7,529						

	Number of CMV Injuries - Barnett Shale Region												
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal					
2006*	42	162	473	989	7,980	4,948	14,595						
2007*	61	156	563	1,030	10,144	3,550	15,504	56,707					
2008	54	179	534	928	9,933	3,550	15,178	50,707					
2009	45	150	404	676	7,615	2,540	11,430						
2010	49	151	481	691	7,607	231	9,210						
2011	33	123	403	669	7,219	244	8,691	27.027					
2012	35	159	387	644	8,059	208	9,492	37,827					
2013	33	136	462	684	8,815	304	10,434						

	1	in Region	rmian Bas	uries - Pe	of CMV Inj	Number o		
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	4,309	1,556	2,274	232	169	48	30	2006*
16,734	4,256	681	2,947	316	218	64	31	2007*
10,754	4,509	1,167	2,743	303	212	59	25	2008
	3,660	895	2,244	261	200	42	18	2009
	3,034	31	2,462	223	224	60	34	2010
10 100	3,508	42	2,782	289	267	81	47	2011
16,109	4,479	41	3,522	408	306	128	74	2012
	5,088	93	3,980	368	421	157	69	2013

	Number of CMV Injuries - Remaining Counties											
Year	ear Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown					To	tal					
2006*	382	1,037	3,265	7,979	55,506	30,857	99,027					
2007*	404	1,050	3,316	8,138	61,207	30,857	104,973	370,987				
2008	401	892	3,312	7,133	57,823	19,396	88,957	570,567				
2009	246	712	2,617	5,962	51,990	16,503	78,030					
2010	337	852	3,018	5,898	51,923	1,547	63,575					
2011	296	733	2,704	5,267	48,909	1,577	59,486	254 014				
2012	333	767	2,982	5,629	52,300	1,570	63,581	254,011				
2013	360	956	3,047	5,554	55,552	1,900	67,369					

Number of Rural CMV Injuries - Statewide											
otal	Year Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown Tot							Year			
;	41,166	18,017	18,708	2,051	1,526	558	306	2006*			
5 152,258	48,526	21,540	21,894	2,458	1,746	566	321	2007*			
	34,425	8,959	20,661	2,223	1,695	568	319	2008			
L	28,141	7,074	17,405	1,716	1,311	426	209	2009			
3	22,523	309	18,194	1,630	1,577	544	269	2010			
	22,464	302	18,162	1,595	1,605	534	266	2011			
97,923	25,027	296	20,081	2,002	1,675	622	351	2012			
)	27,909	465	22,263	2,084	1,957	763	377	2013			

Table 14. Number of Injuries in Rural CMV Crashes.

	gion	Shale Re	agle Ford	njuries - E	ural CMV I	nber of Ru	Nun	
otal	То	Year Fatal Incapacit. Non-Incap. Possible Inj. No Injury Unknown To						Year
-	7,961	6,176	1,332	201	182	32	38	2006*
19,62	6,833	4,632	1,664	270	194	37	35	2007*
	2,759	772	1,519	186	167	79	36	2008
2	2,072	574	1,163	130	129	42	34	2009
Ļ	2,074	26	1,550	162	235	73	28	2010
11,39	2,441	29	1,834	177	273	85	43	2011
	3,213	52	2,345	314	309	116	77	2012
'	3,667	65	2,719	367	322	131	63	2013

	Nu	mber of F	Rural CMV	/ Injuries -	Barnett S	Shale Regi	on		
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	nknown Total		
2006*	26	63	122	118	1,698	1,448	3,475		
2007*	26	50	153	142	2,212	3,378	5,961	14,923	
2008	38	70	151	144	2,253	965	3,621	14,925	
2009	20	34	87	78	1,164	483	1,866		
2010	24	36	101	65	929	18	1,173		
2011	12	42	112	74	1,124	24	1,388	F F10	
2012	15	45	75	68	1,238	11	1,452	5,518	
2013	20	36	109	71	1,246	23	1,505		

	ion	Basin Regi	Permian	Injuries -	ural CMV	mber of R	Nu	
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	2,536	1,328	901	121	133	30	23	2006*
7,992	1,762	221	1,167	145	161	40	28	2007*
7,352	2,095	664	1,103	136	130	40	22	2008
	1,598	511	819	90	128	35	15	2009
	1,337	10	1,033	85	138	43	28	2010
0 500	1,871	14	1,415	147	191	64	40	2011
8,580	2,410	16	1,785	239	216	98	56	2012
	2,962	34	2,241	182	313	132	60	2013

	N	umber of	Rural CM	V Injuries	- Remaini	ng Counti	es	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006*	218	433	1,089	1,611	14,778	9,065	27,194	
2007*	232	439	1,238	1,901	16,851	13,309	33,970	109,719
2008	223	379	1,247	1,757	15,786	6,558	25,950	109,719
2009	140	315	967	1,418	14,259	5,506	22,605	
2010	189	392	1,103	1,318	14,682	255	17,939	
2011	171	343	1,029	1,197	13,789	235	16,764	72 420
2012	203	363	1,075	1,381	14,713	217	17,952	72,430
2013	234	464	1,213	1,464	16,057	343	19,775	

		Numbe	er of On-S	ystem Inju	iries - Sta	tewide		
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006	2,620	10,840	40,891	95,881	454,513	61,576	666,321	
2007	2,585	10,499	41,387	93,962	480,608	64,219	693,260	2,670,807
2008	2,575	9,873	39,145	85,086	465,722	56,885	659,286	2,070,007
2009	2,280	9,097	37,962	83,911	464,696	53,994	651,940	
2010	2,306	9,950	40,651	76,503	451,060	22,282	602,752	
2011	2,303	9,518	39,030	74,782	437,621	21,508	584,762	2 407 000
2012	2,565	10,414	41,844	81,168	476,549	24,159	636,699	2,497,866
2013	2,597	10,985	43,250	80,495	509,153	27,173	673,653	

Table 15. Number of Injuries in Crashes on State Highways.

	Num	nber of Or	n-System	Injuries - E	agle Ford	Shale Re	gion	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006	243	817	2,867	4,667	26,455	3,250	38,299	
2007	215	748	2,891	4,385	27,372	3,330	38,941	153,606
2008	213	703	2,831	4,126	28,223	2,938	39,034	155,000
2009	191	686	2,537	4,306	27,126	2,486	37,332	
2010	189	755	2,717	3,895	28,309	721	36,586	
2011	215	814	2,995	4,243	29,069	794	38,130	157.978
2012	293	913	3,130	4,782	31,009	872	40,999	157,978
2013	234	949	3,304	4,769	32,113	894	42,263	

	Nu	mber of C	Dn-Systen	n Injuries -	Barnett	Shale Regi	ion	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	Total	
2006	246	1,345	4,890	10,195	49,664	6,990	73,330	
2007	269	1,321	5,241	10,021	53,626	7,719	78,197	297,381
2008	230	1,298	4,670	8,910	50,959	6,910	72,977	257,501
2009	216	1,121	4,480	8,704	51,911	6,445	72,877	
2010	212	1,254	4,817	8,332	49,920	2,593	67,128	
2011	215	1,235	4,722	7,964	46,977	2,496	63,609	272 (10
2012	203	1,286	4,783	8,204	51,784	2,682	68,942	272,618
2013	207	1,310	5,172	8,111	55,209	2,930	72,939	

	ion	Basin Reg	Permian	Injuries -	n-System	mber of O	Nu	
tal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	26,879	2,083	18,977	3,524	1,747	391	157	2006
109,201	29,269	2,290	21,037	3,492	1,903	417	130	2007
109,201	26,967	2,162	19,153	3,316	1,778	423	135	2008
	26,086	2,007	18,804	3,171	1,638	327	139	2009
	25,464	403	19,533	3,103	1,886	387	152	2010
115 161	26,574	635	20,047	3,331	1,952	448	161	2011
115,161	30,358	854	22,660	3,950	2,169	510	215	2012
	32,765	963	24,495	4,028	2,443	601	235	2013

	Nu	umber of	On-Syster	n Injuries	- Remaini	ng Counti	es	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006	1,974	8,287	31,387	77,495	359,417	49,253	527,813	
2007	1,971	8,013	31,352	76,064	378,573	50,880	546,853	2,110,619
2008	1,997	7,449	29,866	68,734	367,387	44,875	520,308	2,110,019
2009	1,734	6,963	29,307	67,730	366,855	43,056	515,645	
2010	1,753	7,554	31,231	61,173	353,298	18,565	473,574	
2011	1,712	7,021	29,361	59,244	341,528	17,583	456,449	1 052 100
2012	1,854	7,705	31,762	64,232	371,096	19,751	496,400	1,952,109
2013	1,921	8,125	32,331	63,587	397,336	22,386	525,686	

		Number o	of Rural O	n-System	njuries - S	Statewide	2	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006	1,573	4,963	13,674	18,113	97,888	15,728	151,939	
2007	1,546	4,705	13,912	18,105	103,908	17,023	159,199	592,775
2008	1,451	4,281	13,037	16,246	96,403	14,821	146,239	592,775
2009	1,293	3,868	11,931	14,802	91,030	12,474	135,398	
2010	1,256	4,059	12,362	13,286	91,464	2,905	125,332	
2011	1,279	3,899	11,742	13,009	89,583	2,681	122,193	F27 400
2012	1,483	4,404	12,479	14,929	98,449	2,964	134,708	527,166
2013	1,477	4,873	12,972	14,714	107,378	3,519	144,933	

Table 16. Number of Injuries in Crashes on Rural State Highways.

	Region	ord Shale	- Eagle F	m Injuries	On-Syste	r of Rural	Numbe	
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	13,902	1,479	8,439	1,620	1,609	568	187	2006
52,369	13,963	1,541	8,593	1,533	1,601	510	185	2007
52,505	12,992	1,352	8,257	1,293	1,464	453	173	2008
	11,512	1,038	7,243	1,371	1,279	433	148	2009
	11,383	214	8,028	1,236	1,278	479	148	2010
52,884	12,069	240	8,341	1,332	1,464	516	176	2011
	14,395	342	9,830	1,781	1,591	605	246	2012
]	15,037	349	10,405	1,782	1,642	676	183	2013

	Numb	er of Rura	al On-Syst	em Injurio	es - Barne	tt Shale R	egion	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006	95	380	885	1,004	6,791	1,267	10,422	
2007	111	373	951	968	7,697	1,485	11,585	40,622
2008	114	379	940	904	7,074	1,272	10,683	40,022
2009	84	262	754	731	5,366	735	7,932	
2010	79	224	666	588	4,951	112	6,620	
2011	69	257	708	597	4,759	103	6,493	27 572
2012	81	301	658	616	5,354	127	7,137	27,573
2013	72	286	757	555	5,541	112	7,323	

	Region	an Basin R	s - Permi	em Injurie	al On-Syst	er of Rura	Numb	
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
	7,471	874	4,549	839	838	251	120	2006
29,389	8,357	1,084	5,168	886	881	228	110	2007
29,309	7,105	906	4,375	701	778	257	88	2008
	6,456	739	4,044	690	697	184	102	2009
	5,727	83	4,021	517	815	199	92	2010
20.044	6,703	79	4,801	629	810	260	124	2011
30,944	8,483	113	5,999	925	958	328	160	2012
]	10,031	179	7,141	836	1,269	429	177	2013

	Num	ber of Rur	al On-Sys	tem Injuri	es - Rema	ining Cou	nties	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006	1,171	3,764	10,342	14,650	78,109	12,108	120,144	
2007	1,140	3,594	10,479	14,718	82,450	12,913	125,294	470,395
2008	1,076	3,192	9,855	13,348	76,697	11,291	115,459	470,555
2009	959	2,989	9,201	12,010	74,377	9,962	109,498	
2010	937	3,157	9,603	10,945	74,464	2,496	101,602	
2011	910	2,866	8,760	10,451	71,682	2,259	96,928	445 365
2012	996	3,170	9,272	11,607	77,266	2,382	104,693	415,765
2013	1,045	3,482	9,304	11,541	84,291	2,879	112,542	

	Number of CMV On-System Injuries - Statewide									
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal		
2006*	459	1,087	3,223	6,166	43,337	40,369	94,641	337,132		
2007*	482	1,113	3,445	6,547	49,377	37,172	98,136			
2008	472	1,018	3,357	5,956	47,722	19,342	77,867	557,152		
2009	327	773	2,678	4,961	41,495	16,255	66,489			
2010	405	990	3,261	5,113	42,887	1,312	53,968			
2011	396	898	2,997	4,709	41,937	1,329	52,266			
2012	479	1,016	3,381	5,375	46,080	1,438	57,769	226,684		
2013	499	1,230	3,703	5,563	49,946	1,740	62,681			

Table 17. Number of Injuries in CMV Crashes on State Highways.

	Region	ord Shale	- Eagle Fo	m Injuries	On-Syste	er of CMV	Numbe	
Total	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year
3	15,233	11,704	2,852	283	304	46	44	2006*
7 38,72	14,527	10,472	3,322	310	328	57	38	2007*
	5,022	1,232	3,109	281	259	100	41	2008
4	3,944	996	2,410	249	191	56	42	2009
3	3,783	56	3,000	307	294	94	32	2010
2 19.80	4,442	55	3,524	378	335	104	46	2011
	5,411	84	4,195	500	414	134	84	2012
6	6,166	97	4,855	544	439	161	70	2013

	Numb	per of CM	V On-Syst	em Injurie	es - Barne	tt Shale R	egion	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006*	38	141	359	696	4,947	4,037	10,217	38,333
2007*	53	128	449	687	6,208	2,307	9,832	
2008	49	144	410	657	6,349	2,595	10,204	30,333
2009	41	113	295	508	5,178	1,945	8,080	
2010	43	121	371	560	5,356	157	6,608	
2011	32	101	335	481	4,934	163	6,046	26.004
2012	30	137	303	510	5,459	171	6,610	26,804
2013	31	112	384	555	6,255	203	7,540	

	egion	an Basin R	s - Permia	em Injurie	V On-Svst	er of CM	Numb	
otal		Unknown		Possible Inj.		Incapacit.	Fatal	Year
12,259	3,406	1,409	1,585	193	147	41	31	2006*
	2,821	157	2,132	259	186	56	31	2007*
12,25	3,400	939	1,974	236	172	56	23	2008
	2,633	731	1,515	172	162	36	17	2009
	2,328	16	1,862	175	188	55	32	2010
12.00	2,771	28	2,164	224	235	74	46	2011
12,88	3,623	32	2,792	347	263	118	71	2012
	4,164	72	3,216	291	375	146	64	2013

	Num	ber of CM	IV On-Syst	tem Injuri	es - Rema	ining Cou	nties	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006*	345	859	2,413	4,995	33,953	23,220	65,785	247,815
2007*	359	872	2,482	5,291	37,715	24,237	70,956	
2008	359	718	2,516	4,782	36,290	14,576	59,241	
2009	227	568	2,030	4,032	32,392	12,583	51,832	
2010	298	720	2,408	4,071	32,669	1,083	41,249	
2011	272	619	2,092	3,626	31,315	1,083	39,007	107 102
2012	294	627	2,401	4,018	33,634	1,151	42,125	167,192
2013	334	811	2,505	4,173	35,620	1,368	44,811	

	Number of Rural CMV On-System Injuries - Statewide										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal			
2006*	299	501	1,353	1,612	13,614	12,694	30,073	119,198			
2007*	312	523	1,559	1,983	16,121	19,620	40,118				
2008	298	527	1,499	1,777	15,358	7,772	27,231				
2009	202	383	1,179	1,373	12,579	6,060	21,776				
2010	252	500	1,417	1,368	13,099	246	16,882				
2011	261	489	1,416	1,294	13,799	244	17,503				
2012	337	570	1,517	1,675	14,784	238	19,121	75,248			
2013	362	723	1,788	1,776	16,705	388	21,742				

Table 18. Number of Injuries in CMV Crashes on Rural State Highways.

	Number o	f Rural CN	VV On-Sys	stem Injur	ies - Eagle	e Ford Sha	le Region	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal
2006*	39	28	179	151	1,156	2,132	3,684	
2007*	35	36	193	208	1,475	1,827	3,776	11 054
2008	34	77	164	134	1,359	707	2,475	11,854
2009	34	40	119	126	1,053	547	1,919	
2010	28	70	218	157	1,355	26	1,854	
2011	43	76	263	172	1,714	24	2,292	10.472
2012	75	112	295	308	2,057	45	2,892	10,472
2013	62	131	317	353	2,510	61	3,434	

	Number of Rural CMV On-System Injuries - Barnett Shale Region										
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	То	tal			
2006*	24	61	100	101	1,266	1,616	3,169	14,214			
2007*	27	44	143	120	1,610	4,848	6,792				
2008	36	64	136	118	1,639	808	2,801				
2009	19	28	78	55	877	395	1,452				
2010	20	36	85	59	722	10	932				
2011	12	36	106	55	816	20	1,045	4 220			
2012	14	45	67	60	963	10	1,159	4,326			
2013	19	35	100	56	959	21	1,190				

	Number	of Rural C	MV On-Sy	ystem Inju	iries - Per	mian Basi	n Region	
Year	Fatal	Incapacit.	Non-Incap.	Possible Inj.	No Injury	Unknown	To	tal
2006*	25	26	123	113	720	609	1,615	
2007*	29	36	143	126	1,010	305	1,649	6 590
2008	20	39	113	122	942	609	1,845	6,580
2009	15	33	119	82	749	473	1,471	
2010	27	42	130	77	902	9	1,187	
2011	39	59	170	133	1,284	12	1,697	7 050
2012	54	91	192	223	1,635	16	2,211	7,858
2013	55	124	287	167	2,098	32	2,763	

Number of Rural CMV On-System Injuries - Remaining Counties										
otal	То	Unknown	No Injury	Possible Inj.	Non-Incap.	Incapacit.	Fatal	Year		
	21,605	8,338	10,473	1,247	951	386	211	2006*		
86,55	27,902	12,641	12,026	1,529	1,079	406	221	2007*		
	20,110	5,648	11,418	1,403	1,086	347	208	2008		
	16,934	4,645	9,900	1,110	863	282	134	2009		
	12,909	201	10,120	1,075	984	352	177	2010		
	12,469	188	9,985	934	877	318	167	2011		
52,59	12,859	167	10,129	1,084	963	322	194	2012		
	14,355	274	11,138	1,200	1,084	433	226	2013		

General Trends

With the data compiled in Table 3 through Table 18, as well as basic crash attribute data such as severity, number and type of vehicles involved, manner of collision, contributing factors and type of roadway, the research team prepared a series of figures and charts to develop a high-level understanding of crash locations and trends. This section includes a small sample of charts and figures to illustrate general highlights. Additional materials could be prepared as needed.

Figure 4 shows the annual relative variation in the number of crashes using year 2006 as the reference point. In the figure, an index value of 1.0 means that the number of crashes for any given year was the same as the number of crashes in 2006. The figure shows aggregated changes for the Barnet Shale region (13 counties), Eagle Ford Shale region (29 counties), and Permian Basin region (37 counties), as well as all other 175 counties in the state. Figure 4 shows values for all crashes; fatal, incapacitating injuries, and non-incapacitating (KAB) injury crashes; and fatal crashes. Overall, the figure shows that both crashes in energy sector counties and non-energy sector counties decreased from 2006 through 2009, then increased from 2010 through 2013. Crashes in the Eagle Ford Shale and Permian Basin regions increased faster than in other regions in the state. The relative growth in crashes in those two regions increased faster as the severity of the crashes increased.

The decrease in the number of fatal crashes in the Eagle Ford Shale region in 2013 was an interesting observation, but the research team could not identify a clear reason as to why this happened. It is possible that enhanced safety campaigns by the Department of Public Safety in the region had an impact. However, more research would be necessary to isolate and quantify this effect. In any case, even with this decrease, the number of fatal crashes in the Eagle Ford Shale region in 2013 was slightly higher than in 2006.

Figure 5 shows a similar figure for rural crashes. As in the previous figure, Figure 5 shows all rural crashes, rural KAB crashes, and rural fatal crashes. The trends are somewhat similar as in Figure 4, but the differences among regions are more clearly defined. In particular, the number of KAB crashes and fatal crashes in rural areas in the Eagle Ford Shale and Permian Basin regions began to increase in 2010 and 2011, and by 2012 they were higher than in 2006.

As described in Chapter 2, there was a very strong correlation between the change in the number of new wells and rural CMV crashes. Figure 6 shows all rural CMV crashes, rural KAB CMV crashes, and rural fatal CMV crashes. In this case, the trends in Figure 5 were even more clearly defined. In particular, not only did rural CMV crashes in the Eagle Ford Shale and Permian Basin regions begin to increase in 2010, they were already higher that year than in 2006. Notice also that, despite the decrease in rural fatal CMV crashes in the Eagle Ford Shale region in 2013, the number of rural CMV crashes in that region was still more than twice the number in 2006.

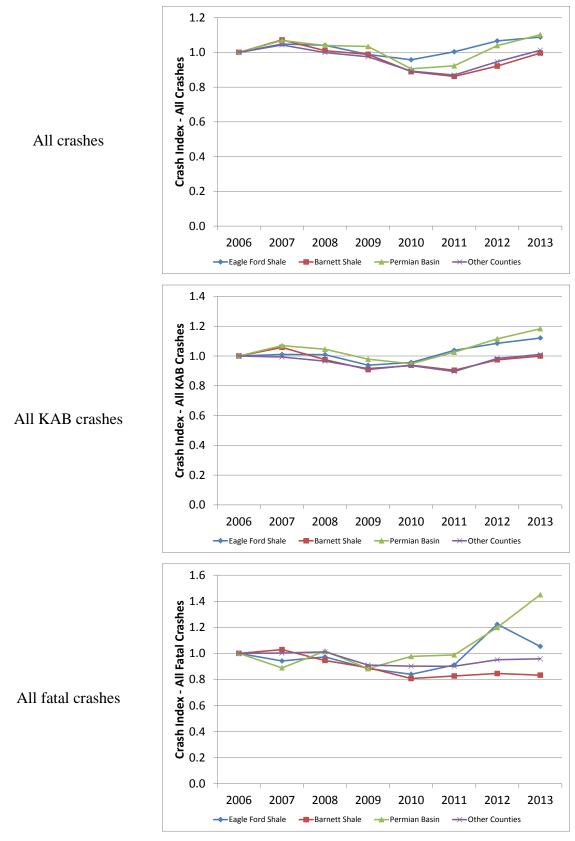


Figure 4. Crash Index – All Crashes.

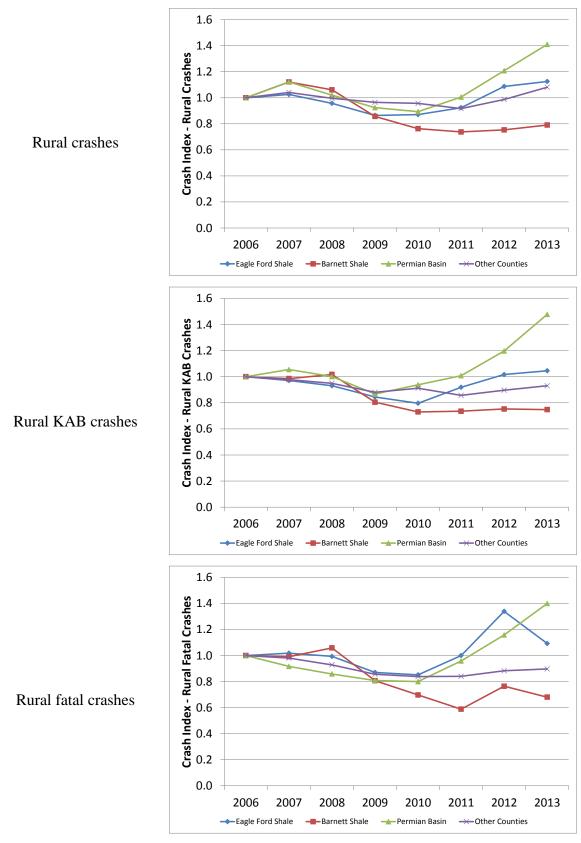


Figure 5. Crash Index – Rural Crashes.

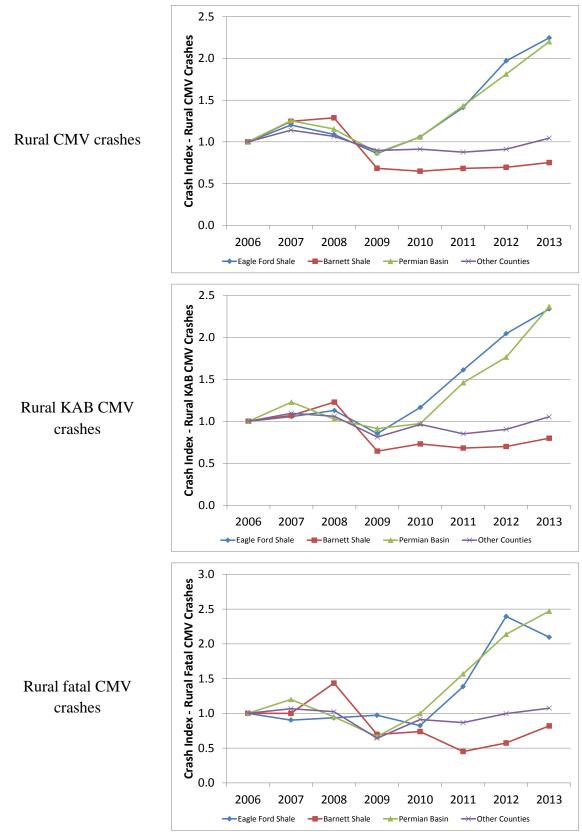


Figure 6. Crash Index – Rural CMV Crashes.

CRIS contains data regarding manners of collision and crash contributing factors for individual crashes, according to information included in the crash reports. This information is based on police officers' interpretation of what happened at the crash sites, not based on forensic or engineering analyses. Despite these caveats, a high-level review of the data offers insight as to potential crash causes.

Figure 7 shows the top 10 manners of collision in CRIS. There were some differences among regions, but for the most part, the trends were similar throughout the state. By far, the most common manner of collision was a single motor vehicle going straight. The second and third most common manners of collision were two vehicles going straight either in opposite or same directions. Readers should note that a vehicle going straight does not mean that the road alignment was straight. It just means the vehicle was not making a turn. A more detailed analysis would be necessary to clarify the impact of roadway characteristics, such as horizontal and vertical alignments, curvature, cross section characteristics, visibility restrictions, and pavement conditions.

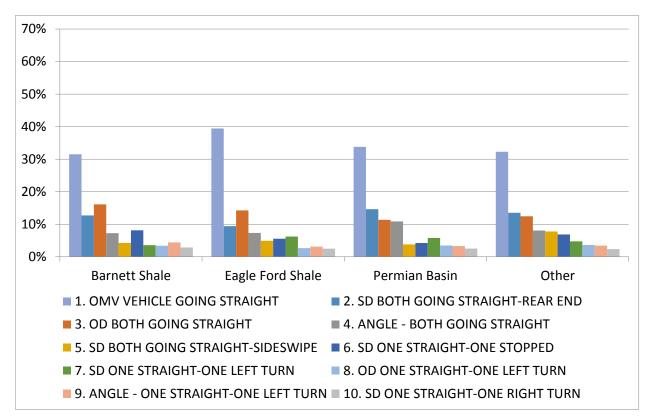


Figure 7. Top 10 Manners of Collision (2010–2013 Crash Data).

Figure 8 shows the top 10 vehicle contributing factors in CRIS. There were some differences among regions, but for the most part, the trends were similar throughout the state. By far, the most common vehicle contributing factor category was "not applicable," which is an indication

of the police officer's inability to identify what vehicle factor may have contributed to the crash based on information that was readily available at the crash site. In many cases, it is possible that the interaction between the roadway environment and the vehicle was a contribution factor to a crash. However, this information is normally not included in crash reports. Most other vehicle contributing factors in Figure 8 are factors that could be considered driver factors (i.e., factors that might suggest lack of control by the driver as a contributing factor to the crash).

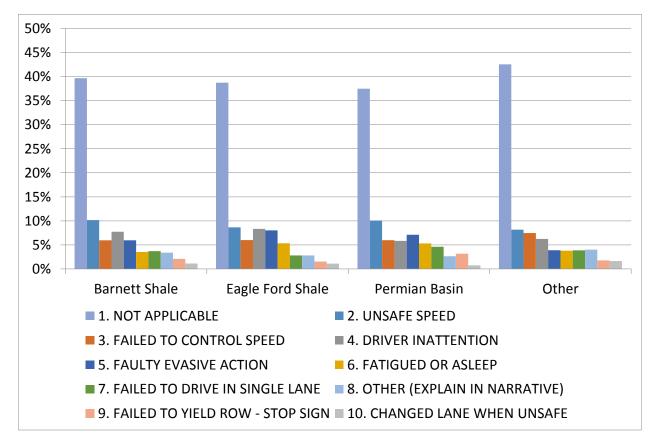


Figure 8. Top 10 Vehicle Contributing Factors (2010–2013 Crash Data).

Chapter 2. Analysis and Trends

Oil and Gas Well Developments

The March 2015 report provides information on the methodology to extract and analyze oil and gas energy developments in the state (2). In summary, the research team aggregated and compared data using two four-year blocks: 2006–2009 and 2010–2013. Table 19 summarizes changes in the number of new completed wells in the Barnett Shale, Eagle Ford Shale, and Permian Basin regions from 2006–2009 to 2010–2013. The table also shows the total number of wells completed in other areas and throughout the state.

The total number of new wells increased from 51,393 during the four-year period from 2006–2009 to 55,398 from 2010–2013 (i.e., the total number of wells drilled increased by 8 percent). This growth was not uniform. For example, in the Barnett Shale region, the number of new horizontal wells decreased by 48 percent and the number of new vertical wells decreased by 53 percent. In the Eagle Ford Shale region, the number of new horizontal wells increased by 941 percent but the number of new vertical wells decreased by 20 percent. In the Permian Basin region, the number of new horizontal wells increased by 240 percent and the number of new vertical wells increased by 49 percent.

Region	Number	of Horizon	tal Wells	Numbe	r of Vertic	al We	ells	Total N	Number o	f Wells
Region	2006-09	2010-13	Diff.	2006-09	2010-13	D	iff.	2006-09	2010-13	Diff.
Barnett Shale	8,663	4,490	-489	6 1,482	698		-53%	10,145	5,188	-49%
Eagle Ford Shale	854	8,886	9419	6 4,595	3,689		-20%	5,449	12,575	131%
Permian Basin	951	3,230	2409	6 14,381	21,396		49%	15,332	24,626	61%
Other	1,761	3,356	919	6 18,706	9,653		-48%	20,467	13,009	-36%
Grand Total	12,229	19,962	639	6 39,164	35,436		-10%	51,393	55,398	8%
Karnes County	28	1,312	45869	6 38	50		32%	66	1,362	1964%

 Table 19. Changes in the Number of New Completed Wells.

Changes in the Number of Crashes and Injuries

With the data compiled in Table 3 through Table 18, the research team examined changes in the number of crashes and the number of injuries from 2006–2009 to 2010–2013. Table 20 through Table 23 summarize the results, as follows:

- Table 20 shows changes in the number of crashes on all highways.
- Table 21 shows changes in the number of crashes on state highways.
- Table 22 shows changes in the number of injuries on all highways.
- Table 23 shows changes in the number of injuries on state highways.

Table 20. Changes in the Number of Crashes on All Highways.

Note: Green dots correspond to decreases in the number of crashes (desirable trend). Red dots correspond to increases in the number of crashes (undesirable trend).

		Number of	Crashes (F	atal, Incapa	acitating, N	on-Incapa	acitating, P	ossible Inju	iry, No-Inj	ury, Unkn	own)	
Region		All			Rural		CI	MV-Involve	d	Rural	& CMV-Inv	volved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	184,735	166,474	-10%	24,572	18,521	-25%	14,119	12,367	-12%	3,130	2,061	-34%
Eagle Ford Shale	85,964	86,744	9 1%	27,660	28,804	9 4%	6,607	8,708	932%	2,820	4,542	61%
Permian Basin	80,891	77,511	-4%	15,689	17,426	🥚 11%	4,775	6,368	933%	2,464	3,743	52%
Other	1,410,907	1,306,749	-7%	288,715	284,431	-1%	90,081	77,755	-14%	26,221	23,942	-9%
Grand Total	1,762,497	1,637,478	-7%	356,636	349,182	-2%	115,582	105,198	9%	34,635	34,288	-1%

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

			1	lumber of F	atal, Incapa	citating,	Non-Incap	acitating Cr	ashes			
Region		All			Rural		CI	MV-Involve	d	Rural	& CMV-Inv	volved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	31,739	30,728	-3%	5,346	4,165	-22%	2,124	1,846	-13%	642	474	-26%
Eagle Ford Shale	14,382	15,264	6%	6,889	6,948	9 1%	1,096	1,641	50%	662	1,173	0 77%
Permian Basin	11,520	12,019	6 4%	3,841	4,524	🥚 18%	883	1,333	6 51%	617	971	57%
Other	204,134	201,541	-1%	57,296	54,123	-6%	12,568	11,792	-6%	4,998	4,751	-5%
Grand Total	261,775	259,552	-1%	73,372	69,760	-5%	16,671	16,612	0%	6,919	7,369	0 7%

					Numb	er of Fata	al Crashes						
Region		All			Rural		CI	MV-Involve	d	Rural	& CMV-Inv	volve	d
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Di	ff.
Barnett Shale	1,202	1,030	-14%	459	325	-29%	181	135	-25%	101	63	-	-37%
Eagle Ford Shale	851	902	6%	629	694	0 10%	129	204	58%	102	179		76%
Permian Basin	648	789	9 22%	430	518	0 20%	94	183	94%	80	151		88%
Other	9,465	8,954	-5%	4,673	4,293	-8%	1,177	1,170	-1%	663	684		3%
Grand Total	12,166	11,675	-4%	6,191	5,830	-6%	1,582	1,692	0 7%	946	1,077		14%

Table 21. Changes in the Number of Crashes on State Highways.

Note: Green dots correspond to decreases in the number of crashes (desirable trend). Red dots correspond to increases in the number of crashes (undesirable trend).

		Number of	f Crash	nes (F	Fatal, Inca	pacitating,	N	on-Inca	apacitatin	g, Possibl	e In	jury, N	lo-Injury, l	Jnknown)		
Region		All				Rural			CN	/IV-Involv	ed		Rural	& CMV-Inv	olve	ed
	2006-09	2010-13	Diff	F.	2006-09	2010-13		Diff.	2006-09	2010-13	0	Diff.	2006-09	2010-13	[Diff.
Barnett Shale	101,789	97,528	—	4%	16,179	12,523		-23%	10,010	9,278	\bigcirc	-7%	2,525	1,745	\bigcirc	-31%
Eagle Ford Shale	54,020	58,201		8%	21,974	23,975		9%	4,979	7,186	\bigcirc	44%	2,556	4,259		67%
Permian Basin	38,703	43,040	0 1	1%	12,046	14,114		17%	3,645	5,189	\bigcirc	42%	2,189	3,384		55%
Other	726,867	698,902	—	4%	181,734	171,845		-5%	60,499	55,617	\bigcirc	-8%	20,907	19,210		-8%
Grand Total	921,379	897,671	- 0	3%	231,933	222,457		-4%	79,132	77,270	\bigcirc	-2%	28,178	28,598		1%

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

					Number of	Fatal, Inca	pa	citatin	g, Non-In	capacitati	ng	Crashe	s			
Region		All				Rural			CN	/IV-Involv	ed		Rural	& CMV-Inv	olve	ed
	2006-09	2010-13	Dif	ff.	2006-09	2010-13		Diff.	2006-09	2010-13	1	Diff.	2006-09	2010-13	[Diff.
Barnett Shale	18,636	18,766	\mathbf{O}	1%	3,798	2,998		-21%	1,675	1,503		-10%	575	428		-26%
Eagle Ford Shale	10,122	11,208	0 1	11%	5,684	5,986		5%	974	1,503	\bigcirc	54%	639	1,122	\bigcirc	76%
Permian Basin	6,485	7,799	0 2	20%	3,059	3,775		23%	752	1,166	\bigcirc	55%	561	881	\bigcirc	57%
Other	114,236	116,161		2%	39,809	37,182		-7%	9,645	9,522	\bigcirc	-1%	4,387	4,232		-4%
Grand Total	149,479	153,934		3%	52,350	49,941		-5%	13,046	13,694		5%	6,162	6,663		8%

					Nur	mber of F	atal Crash	ies					
Region		All			Rural		CN	/IV-Involv	ed	Rural	& CMV-Inv	olve	d
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	D	oiff.
Barnett Shale	887	761	-14%	369	268	-27%	167	122	-27%	96	58	\bigcirc	-39%
Eagle Ford Shale	722	792	0 10%	564	627	🥚 11%	123	199	62%	99	176		77%
Permian Basin	482	647	9 34%	355	454	9 28%	93	172	84%	80	142		77%
Other	6,775	6,492	-4%	3,746	3,399	9%	1,046	1,046	0%	622	652		5%
Grand Total	8,866	8,692	-2%	5,034	4,748	6%	1,429	1,539	8%	897	1,028		15%

Table 22. Changes in the Number of Injuries on All Highways.

Note: Green dots correspond to decreases in the number of injuries (desirable trend). Red dots correspond to increases in the number of injuries (undesirable trend).

		Number of	^f Injuries (Fatal, Incapa	acitating, N	on-Incap	acitating, P	ossible Inj	ury, No-In	jury, Unkn	own)	
Region		All			Rural		CN	/IV-Involve	d	Rural 8	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	521,304	446,866	-14%	58,038	38,861	-33%	56,707	37,827	-33%	14,923	5,518	63%
Eagle Ford Shale	241,484	230,497	-5%	63,650	61,679	-3%	28,518	24,812	-13%	19,625	11,395	-42%
Permian Basin	225,483	202,170	0 -10%	37,286	37,788	9 1%	16,734	16,109	-4%	7,992	8,580	0 7%
Other	4,003,334	3,546,753	-11%	738,597	691,735	-6%	370,987	254,011	-32%	109,719	72,430	-34%
Grand Total	4,991,605	4,426,286	-11%	897,571	830,063	8%- 🥘	472,946	332,759	-30%	152,258	97,923	-36%

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

				Number of F	atal, Incap	acitating,	Non-Incap	acitating Ir	njuries			
Region		All			Rural		CN	/IV-Involve	d	Rural 8	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	42,345	40,919	-3%	7,285	5,609	-23%	2,823	2,452	-13%	840	627	-25%
Eagle Ford Shale	20,637	21,945	6%	10,207	10,257	0%	1,654	2 <i>,</i> 385	9 44%	1,006	1,755	0 75%
Permian Basin	15,704	16,515	5%	5,591	6,632	🥚 19%	1,115	1,868	67%	786	1,379	976%
Other	278,208	273,913	-2%	80,963	75,957	-6%	17,635	16,385	-7%	6,920	6,779	-2%
Grand Total	356,894	353,292	-1%	104,046	98,455	-5%	23,228	23,090	-1%	9,552	10,540	🥚 10%

					Num	ber of Fat	al Injuries					
Region		All			Rural		CN	/IV-Involve	d	Rural 8	& CMV-Invo	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	1,294	1,125	-13%	499	364	-27%	201	150	-26%	111	71	-36%
Eagle Ford Shale	1,002	1,047	4%	763	825	8%	169	237	6 40%	143	211	9 47%
Permian Basin	738	914	9 24%	499	619	9 24%	103	224	0117%	88	184	0109%
Other	10,562	9,854	-7%	5,347	4,837	0 -10%	1,433	1,326	-7%	813	797	-2%
Grand Total	13,596	12,940	-5%	7,108	6,645	-7%	1,907	1,937	2%	1,155	1,263	9%

Table 23. Changes in the Number of Injuries on State Highways.

Note: Green dots correspond to decreases in the number of injuries (desirable trend). Red dots correspond to increases in the number of injuries (undesirable trend).

		Number o	of Injuries	(Fatal, Inca	apacitating,	Non-Inca	apacitating	, Possible Ir	njury, No	Injury, Unkr	nown)	
Region		All			Rural		CN	1V-Involve	d	Rural 8	k CMV-Involv	/ed
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	297,381	272,618	-8%	40,622	27,573	-32%	38,333	26,804	-30%	14,214	4,326	-70%
Eagle Ford Shale	153,606	157,978	3%	52,369	52,884	0 1%	38,725	19,802	-49%	11,854	10,472	-12%
Permian Basin	109,201	115,161	5%	29,389	30,944) 5%	12,259	12,886	6 5%	6,580	7,858	🥚 19%
Other	2,110,619	1,952,109	-8%	470,395	415,765	-12%	247,815	167,192	-33%	86,551	52,592	-39%
Grand Total	2,670,807	2,497,866	-6%	592,775	527,166	-11%	337,132	226,684	— -33%	119,198	75,248	-37%

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

				Number o	f Fatal, Inca	apacitatin	g, Non-Inc	apacitating	Injuries			
Region		All			Rural		CN	IV-Involve	d	Rural 8	& CMV-Involv	/ed
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	25,327	25,416	0%	5 <i>,</i> 328	4,158	-22%	2,220	2,000	-10%	761	575	-24%
Eagle Ford Shale	14,942	16,508	🥚 10%	8,610	9,004	5%	1,506	2,207	9 47%	979	1,690	0 73%
Permian Basin	9,185	11,159	0 21%	4,534	5,621	24%	959	1,667	94%	720	1,270	076%
Other	160,300	162,330	0 1%	57,762	53 <i>,</i> 502	-7%	13,748	13,381	-3%	6,175	6,097	-1%
Grand Total	209,754	215,413) 3%	76,234	72,285	-5%	18,434	19,255	6 4%	8,635	9,632	🥚 12%

					Nu	mber of F	atal Injurie	s				
Region		All			Rural		CN	IV-Involve	d	Rural 8	& CMV-Involv	/ed
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	961	837	-13%	404	301	-25%	181	136	-25%	106	65	-39%
Eagle Ford Shale	862	931	8%	693	753	9%	165	232	9 41%	142	208	9 46%
Permian Basin	561	763	9 36%	420	553	9 32%	103	213	07%	89	175	97%
Other	7,676	7,240	-6%	4,346	3,888	-11%	1,290	1,198	-7%	774	764	-1%
Grand Total	10,060	9,771	-3%	5,863	5,495	6%	1,739	1,779	2%	1,111	1,212	9%

Table 20 shows changes in the number of crashes on all highways from 2006–2009 to 2010–2013. In total, the number of crashes decreased by 10 percent in the Barnett Shale region, increased by 1 percent in the Eagle Ford Shale region, and decreased by 4 percent in the Permian Basin region. As a reference, the number of crashes decreased by 7 percent in all other 175 counties in the state.

These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. For example:

• Changes were more prominent for rural crashes. In the Barnett Shale region, the number of rural crashes decreased by 25 percent (compared to a 10 percent decrease overall in the region). In the Eagle Ford Shale region, the number of rural crashes increased by 4 percent (compared to a 1 percent increase overall in the region). In the Permian Basin region, the number of crashes increased by 11 percent (compared to a 4 percent decrease overall in the region).

The changes were even more noticeable for crashes that involved CMVs and, in particular, for rural crashes that involved CMVs. Overall, for rural crashes that involved CMVs, there was a 34 percent decrease in the Barnett Shale region, a 61 percent increase in the Eagle Ford Shale region, and a 52 percent increase in the Permian Basin region. By comparison, there was a 9 percent decrease in all other 175 counties in the state.

• In most cases, as the severity of the injuries worsened, the changes in the corresponding number of crashes were more evident. For example, for rural crashes that involved CMVs in the Barnett Shale region, there was a 26 percent decrease in the number of fatal, incapacitating, and non-incapacitating injury crashes (compared to a 34 percent decrease for all crashes). For fatal crashes, the decrease was 37 percent. In the Eagle Ford Shale region, there was a 77 percent increase in the number of fatal, incapacitating injury crashes (compared to a 61 percent increase for all crashes). For fatal crashes (compared to a 61 percent increase for all crashes). For fatal crashes (compared to a 61 percent increase for all crashes). For fatal crashes (compared to a 52 percent. In the Permian Basin region, the increase was 88 percent.

Table 21 shows changes in the number of crashes on state highways from 2006–2009 to 2010– 2013. In total, the number of crashes decreased by 4 percent in the Barnett Shale region, increased by 8 percent in the Eagle Ford Shale region, and increased by 11 percent in the Permian Basin region. As a reference, the number of crashes decreased by 3 percent in all other 175 counties in the state. These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. The relative changes in the number of crashes on state highways (Table 21) were similar to those found for all highways (Table 20). From 2006–2009 to 2010–2013, the percentage of crashes occurring on state highways increased by about 2 percent. For all crashes, this percentage increased from 52.2 to 54.8 percent. For fatal, incapacitating, and non-incapacitating injury crashes, it increased from 57.1 to 59.3 percent. For fatal crashes, it increased from 72.8 to 74.4 percent. These percentages were higher for rural roads. For example, for CMV crashes on rural roadways, the percentage of crashes on state highways increased from 81.4 to 83.4 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 89.1 to 90.4 percent. For fatal crashes, it increased from 94.8 to 95.4 percent.

Table 22 shows changes in the number of injuries in crashes on all highways from 2006–2009 to 2010–2013. In total, the number of injuries decreased by 14 percent in the Barnett Shale region, decreased by 5 percent in the Eagle Ford Shale region, and decreased by 10 percent in the Permian Basin region. As a reference, the number of injuries decreased by 11 percent in all other 175 counties in the state.

These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. For example:

• The changes were more prominent in the case of rural crashes. In the Barnett Shale region, the number of injuries in rural crashes decreased by 33 percent (compared to a 14 percent decrease overall in the region). In the Eagle Ford Shale region, the number of injuries in rural crashes decreased by 3 percent (compared to a 5 percent decrease overall in the region). In the Permian Basin region, the number of injuries in crashes increased by 1 percent (compared to a 10 percent decrease overall in the region).

The changes were even more noticeable for crashes that involved CMVs and, particularly, for rural crashes that involved CMVs. Overall, for rural crashes that involved CMVs, there was a 63 percent decrease in the Barnett Shale region, a 41 percent decrease in the Eagle Ford Shale region, and a 7 percent increase in the Permian Basin region. By comparison, there was a 34 percent decrease in all other 175 counties in the state.

• In most cases, as the severity of the injuries worsened, the changes in the corresponding number of crashes were more evident. For example, for rural crashes that involved CMVs in the Barnett Shale region, there was a 25 percent decrease in the number of injuries resulting from fatal, incapacitating, and non-incapacitating injury crashes (compared to a 63 percent decrease for all crashes). For fatal crashes, the decrease was 36 percent. In the Eagle Ford Shale region, there was a 75 percent increase in the number of injuries resulting from fatal, incapacitating, and non-incapacitating injury crashes (compared to a 42 percent decrease for all crashes). For fatal crashes, the increase was 47 percent. In the Permian Basin region, there was a 76 percent increase in the number of fatal,

incapacitating, and non-incapacitating injury crashes (compared to a 7 percent increase for all crashes). For fatal crashes, the increase was 109 percent.

Table 23 shows changes in the number of injuries from crashes on state highways from 2006–2009 to 2010–2013. In total, the number of crashes decreased by 8 percent in the Barnett Shale region, increased by 3 percent in the Eagle Ford Shale region, and increased by 5 percent in the Permian Basin region. As a reference, the number of crashes decreased by 8 percent in all other 175 counties in the state. These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. The relative changes in the number of injuries from crashes on state highways (Table 23) were similar to those found for all highways (Table 22).

From 2006–2009 to 2010–2013, the percentage of injuries from crashes occurring on state highways increased by about 2 percent. For all crashes, this percentage increased from 53.5 to 56.4 percent. For fatal, incapacitating, and non-incapacitating injury crashes, it increased from 58.8 to 61.0 percent. For fatal crashes, it increased from 74.0 to 75.5 percent. These percentages were higher for rural roads. For example, for rural CMV crashes, the percentage of injuries from crashes on state highways decreased from 78.3 to 76.8 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 90.4 to 91.4 percent. For fatal crashes, it decreased from 96.2 to 96.0 percent.

Changes in Crash Rates

As part of the 0-6498 research project completed in 2011, the researchers conducted an evaluation of crash rates in the north and northwest regions of the state, with a focus on areas within the jurisdiction of the TxDOT Abilene, Lubbock, and Fort Worth Districts (*1*). For the analysis, the researchers calculated crash rates by dividing the number of crashes found by the number of VMT based on traffic information in the TxDOT Pavement Management Information System (PMIS). Because of concerns about the reliability of average annual daily traffic (AADT) data in the PMIS database (as well as the low frequency of crashes and relatively low traffic volumes that characterize most rural highways), the researchers also used distance (more specifically 100 miles) to estimate crash rates. Although this approach did not explicitly consider exposure, at least it eliminated the issue of traffic volume uncertainty.

Overall, the 0-6498 analysis indicated higher crash rates along corridors where energy developments took place than crash rates along control corridors. The trends also indicated higher crash rates along corridors with higher traffic volumes. In the Lubbock District, crash rates along energy development corridors were similar to those along control corridors. However, traffic volumes were low in general. In the Abilene District (which exhibited higher traffic volumes than those in the Lubbock District), crash rates along energy development corridors were higher than (a) crash rates along control corridors in the same district and (b) crash rates along energy development corridors in the Lubbock District. In the Fort Worth District (which exhibited higher traffic volumes than those in the Abilene District), crash rates along energy development corridors were higher than (a) crash rates along control corridors in the same district and (b) crash rates along energy development corridors in the Abilene District.

For the 2006–2013 crash data compiled as described in the previous chapter, the research team calculated crash rates expressed both as the number of crashes per 100 million VMTs and number of crashes per 100 lane-miles. Table 24 shows the changes in the number of crashes over four years per 100 million VMTs from 2006–2009 to 2010–2013. Table 25 shows the changes in the number of crashes over four years per 100 lane-miles from 2006–2009 to 2010–2013.

Table 24 shows changes in the number of crashes over four years per 100 million VMTs from 2006–2009 to 2010–2013. In total, the crash rate decreased by 2 percent in the Barnett Shale region, increased by 4 percent in the Eagle Ford Shale region, and increased by 7 percent in the Permian Basin region. As a reference, the crash rate decreased by 2 percent in all other 175 counties in the state.

These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. For example:

• The changes were more prominent for rural crashes. In the Barnett Shale region, the rural crash rate decreased by 18 percent (compared to a 2 percent decrease overall in the region). In the Eagle Ford Shale region, the rural crash rate increased by 3 percent (compared to a 4 percent increase overall in the region). In the Permian Basin region, the rural crash rate increased by 13 percent (compared to a 7 percent increase overall in the region).

The changes were even more noticeable for crashes that involved CMVs and, particularly, for rural crashes that involved CMVs. For rural crashes that involved CMVs, there was a 26 percent decrease in the Barnett Shale region, a 57 percent increase in the Eagle Ford Shale region, and a 49 percent increase in the Permian Basin region. By comparison, there was a 6 percent decrease in all other 175 counties in the state.

• In most cases, as the severity of the injuries worsened, the changes in the corresponding crash rate were more evident. For example, for rural crashes that involved CMVs in the Barnett Shale region, there was a 21 percent decrease in the crash rate for fatal, incapacitating, and non-incapacitating injury crashes (compared to a 26 percent decrease for all crashes). For fatal crashes, the decrease was 36 percent. In the Eagle Ford Shale region, there was a 65 percent increase in the crash rate for fatal, incapacitating, and non-incapacit to a 57 percent increase for all crashes). For fatal crashes (compared to a 57 percent increase for all crashes). For fatal crashes (compared to a 57 percent increase for all crashes). For fatal crashes (compared to a 57 percent increase in the crash rate for fatal, incapacitating injury crashes (compared to a 49 percent increase for all crashes). For fatal crashes, the increase for all crashes). For fatal crashes for all crashes, the increase for all crashes, the increase for all crashes, the increase for fatal, incapacitating, and non-incapacitating injury crashes (compared to a 49 percent increase for all crashes). For fatal crashes, the increase was 70 percent.

Table 24. Number of Crashes over Four Years per 100 Million VMTs.

Note: Green dots correspond to decreases in crash rates (desirable trend). Red dots correspond to increases in crash rates (undesirable trend).

		Fatal,	Incapacit	tating, Non	-Incapacita	iting, Pos	sible Injur	y, No-Inju	ury, Unkn	own Crash	Rates	
Region		All			Rural		CN	/IV-Involv	ed	Rural	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	121.8	119.7	-2%	95.1	78.4	-18%	12.0	11.4	-5%	14.8	10.9	-26%
Eagle Ford Shale	115.1	119.5	6 4%	69.6	71.4	9 3%	10.6	14.8	9%	8.1	12.7	57%
Permian Basin	126.5	135.9	0 7%	59.2	66.7	🥚 13%	11.9	16.4	9 37%	10.8	16.0	9%
Other	130.6	127.9	-2%	88.7	85.9	-3%	10.9	10.2	-6%	10.2	9.6	-6%

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes	(b) Fatal	, incapacitati	ng, and no	n-incapaci	tating inju	ry crashes
--	-----------	----------------	------------	------------	-------------	------------

				Fatal, I	ncapacitati	ing,	Non-I	ncapacita	ting Crasl	h Ra	ates				
Region		All			Rural			CN	/IV-Involv	ed		Rural 8	& CMV-Inv	olve	ed
	2006-09	2010-13	Diff.	2006-09	2010-13	D	Diff.	2006-09	2010-13	[Diff.	2006-09	2010-13	[Diff.
Barnett Shale	22.3	23.0	9 3%	22.3	18.8	\bigcirc	-16%	2.0	1.8	\bigcirc	-8%	3.4	2.7	\bigcirc	-21%
Eagle Ford Shale	21.6	23.0	0 7%	18.0	17.8	\bigcirc	-1%	2.1	3.1	\bigcirc	49%	2.0	3.3	\bigcirc	65%
Permian Basin	21.2	24.6	🥚 16%	15.0	17.8	\bigcirc	19%	2.5	3.7	\bigcirc	50%	2.8	4.2	\bigcirc	51%
Other	20.5	21.3	9 4%	19.4	18.6		-4%	1.7	1.7		1%	2.1	2.1		-1%

						Fatal Cra	sh Rates					
Region		All			Rural		CN	/IV-Involv	ed	Rural	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	1.1	0.9	-12%	2.2	1.7	-23%	0.2	0.1	-25%	0.6	0.4	-36%
Eagle Ford Shale	1.5	1.6	6%	1.8	1.9	6 4%	0.3	0.4	6%	0.3	0.5	67%
Permian Basin	1.6	2.0	9 30%	1.7	2.1	23%	0.3	0.5	978%	0.4	0.7	0 70%
Other	1.2	1.2	-2%	1.8	1.7	-7%	0.2	0.2	2%	0.3	0.3	0 7%

Table 25. Number of Crashes over Four Years per 100 Lane-Miles.

Note: Green dots correspond to decreases in crash rates (desirable trend). Red dots correspond to increases in crash rates (undesirable trend).

		Fatal,	Incapacit	ating, Non	-Incapacita	iting, Pos	sible Inju	y, No-Inju	iry, Unkn	own Crash	Rates	
Region		All			Rural		CN	/IV-Involv	ed	Rural	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	777.9	743.7	-4%	230.2	177.9	-23%	76.5	70.8	-8%	35.9	24.8	-31%
Eagle Ford Shale	261.2	278.4	0 7%	123.4	133.2	8%	24.1	34.4	6 43%	14.4	23.7	65%
Permian Basin	169.2	187.5	🥚 11%	59.8	69.9	🥚 17%	15.9	22.6	9 42%	10.9	16.8	54%
Other	532.2	505.5	-5%	184.7	173.2	6%	44.3	40.2	9%	21.2	19.4	-9%

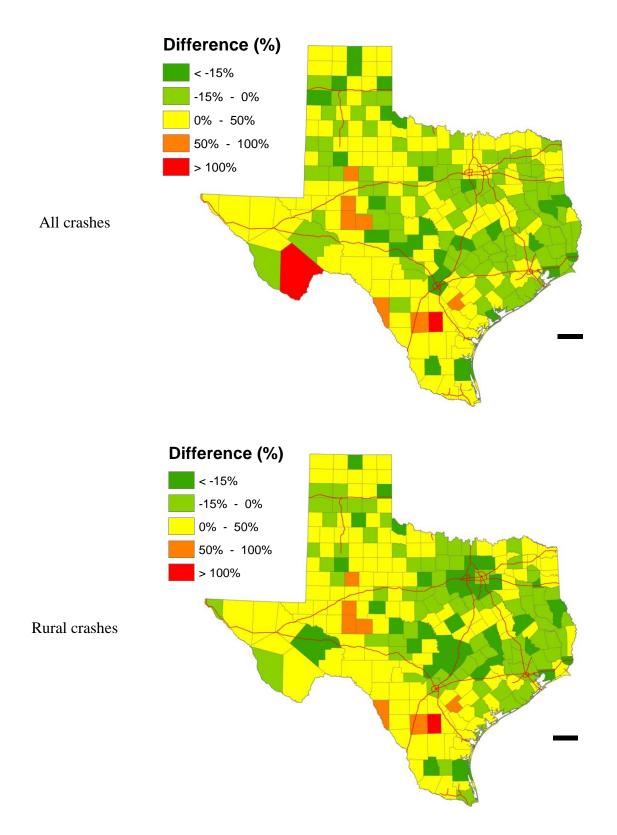
(a) All crashes

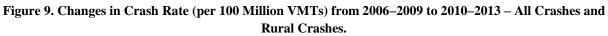
(b) Fatal, incapacitating, and non-incapacitating injury crashes	(b) Fatal	, incapacitating	g, and non-in	capacitating	injury crashes
--	-----------	------------------	---------------	--------------	----------------

				Fatal, I	ncapacitati	ng, N	lon-l	ncapacita	ting Crasl	h Ra	ates				
Region		All			Rural			CN	1V-Involv	ed		Rural	& CMV-Inv	olve	ed
	2006-09	2010-13	Diff.	2006-09	2010-13	Dif	ff.	2006-09	2010-13		Diff.	2006-09	2010-13	1	Diff.
Barnett Shale	142.4	143.1	0%	54.0	42.6	-2	21%	12.8	11.5	\bigcirc	-10%	8.2	6.1		-26%
Eagle Ford Shale	48.9	53.6	🥚 10%	31.9	33.3		4%	4.7	7.2	\bigcirc	53%	3.6	6.2	\bigcirc	74%
Permian Basin	28.3	34.0	0 20%	15.2	18.7	2	23%	3.3	5.1	\bigcirc	54%	2.8	4.4		57%
Other	83.6	84.0	0%	40.5	37.5	•	-7%	7.1	6.9	\bigcirc	-2%	4.5	4.3	\bigcirc	-4%

						Fatal Cra	sh Rates					
Region		All			Rural		CN	/IV-Involv	ed	Rural	& CMV-Inv	olved
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.
Barnett Shale	6.8	5.8	0 -14%	5.2	3.8	-27%	1.3	0.9	-27%	1.4	0.8	-40%
Eagle Ford Shale	3.5	3.8	9%	3.2	3.5	🥚 10%	0.6	1.0	60%	0.6	1.0	75%
Permian Basin	2.1	2.8	934%	1.8	2.2	9 28%	0.4	0.7	83%	0.4	0.7	6%
Other	5.0	4.7	-5%	3.8	3.4	-10%	0.8	0.8	-1%	0.6	0.7	4%

Table 25 shows changes in the number of crashes over four years per 100 lane-miles from 2006–2009 to 2010–2013. In total, the crash rate decreased by 4 percent in the Barnett Shale region, increased by 7 percent in the Eagle Ford Shale region, and increased by 11 percent in the Permian Basin region. As a reference, the crash rate decreased by 5 percent in all other 175 counties in the state.


These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences within each region. For example:


• The changes were more pronounced for rural crashes. In the Barnett Shale region, the rural crash rate decreased by 23 percent (compared to a 4 percent decrease overall in the region). In the Eagle Ford Shale region, the rural crash rate increased by 8 percent (compared to a 7 percent increase overall in the region). In the Permian Basin region, the rural crash rate increased by 17 percent (compared to an 11 percent increase overall in the region).

The changes were even more pronounced for crashes that involved CMVs and, particularly, for rural crashes that involved CMVs. For rural crashes that involved CMVs, there was a 31 percent decrease in the Barnett Shale region, a 65 percent increase in the Eagle Ford Shale region, and a 54 percent increase in the Permian Basin region. By comparison, there was a 9 percent decrease in all other 175 counties in the state.

• In most cases, as the severity of the injuries worsened, the changes in the corresponding crash rate were more pronounced. For example, for rural crashes that involved CMVs in the Barnett Shale region, there was a 26 percent decrease in the crash rate for fatal, incapacitating, and non-incapacitating injury crashes (compared to a 31 percent decrease for all crashes). For fatal crashes, the decrease was 40 percent. In the Eagle Ford Shale region, there was a 74 percent increase in the crash rate for fatal, incapacitating injury crashes (compared to a 65 percent increase for all crashes). For fatal crashes (compared to a 65 percent increase for all crashes). For fatal crashes (compared to a 65 percent increase for all crashes). For fatal crashes (compared to a 54 percent. In the Permian Basin region, there was a 57 percent increase for all crashes, the increase for fatal, incapacitating injury crashes (compared to a 54 percent increase for all crashes). For fatal crashes for all crashes, the increase was 76 percent.

Although the changes in Table 24 and Table 25 are similar, it is worth noting that the basis for the analysis was slightly different, making a comparison between the tables difficult. The reason is that Table 24 relied on AADT data, which were only available for state highways (both rural and urban). By comparison, Table 25 relied on lane-miles, which were only available for rural roads (both state highways and county roads). It is also worth noting that the uncertainty in crash rates (when expressed as the number of crashes per 100 million VMT) increases as traffic volumes decrease, and becomes particularly evident in the case of highway segments with very low AADT values. Figure 9 and Figure 10 illustrate this situation. The uncertainty in crash rates is lower when expressing crash rates per 100 lane-miles (see Figure 11 and Figure 12).

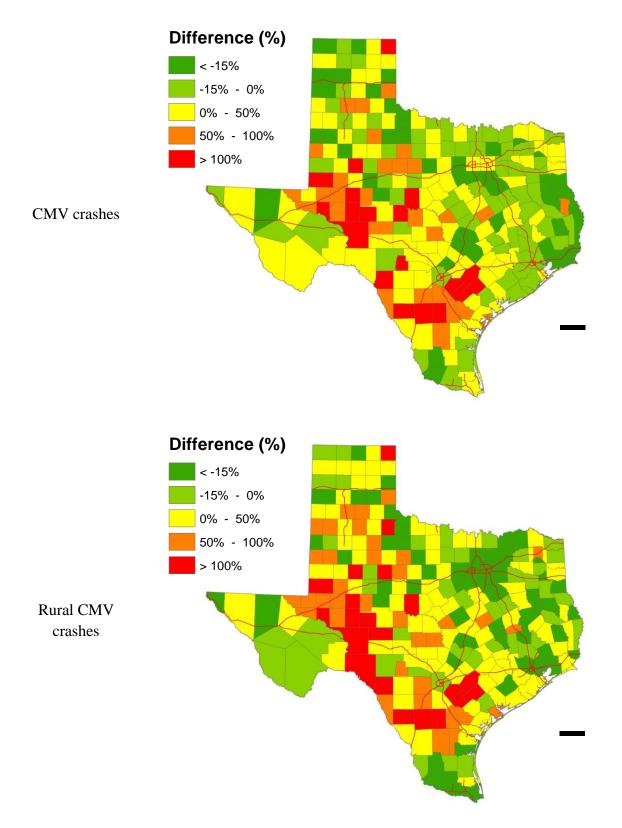


Figure 10. Changes in Crash Rate (per 100 Million VMTs) from 2006–2009 to 2010–2013 – CMV Crashes and Rural CMV Crashes.

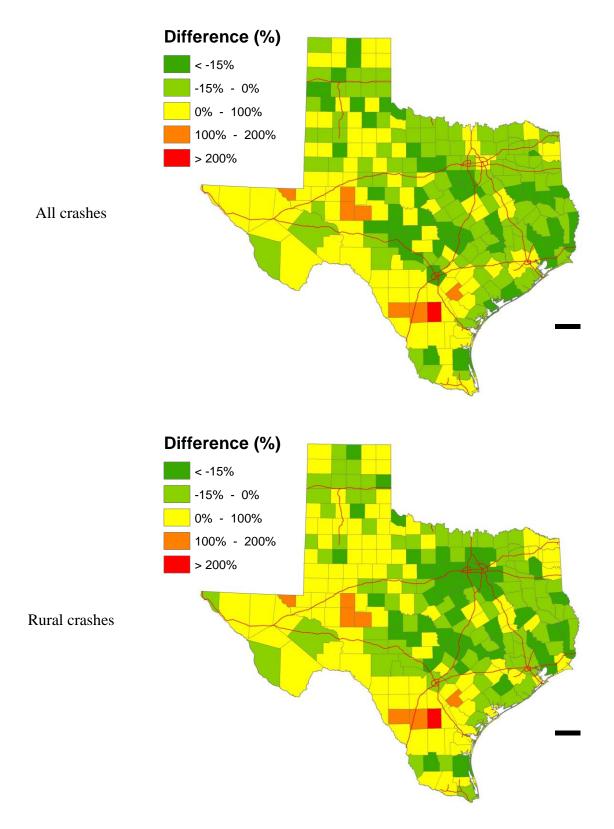
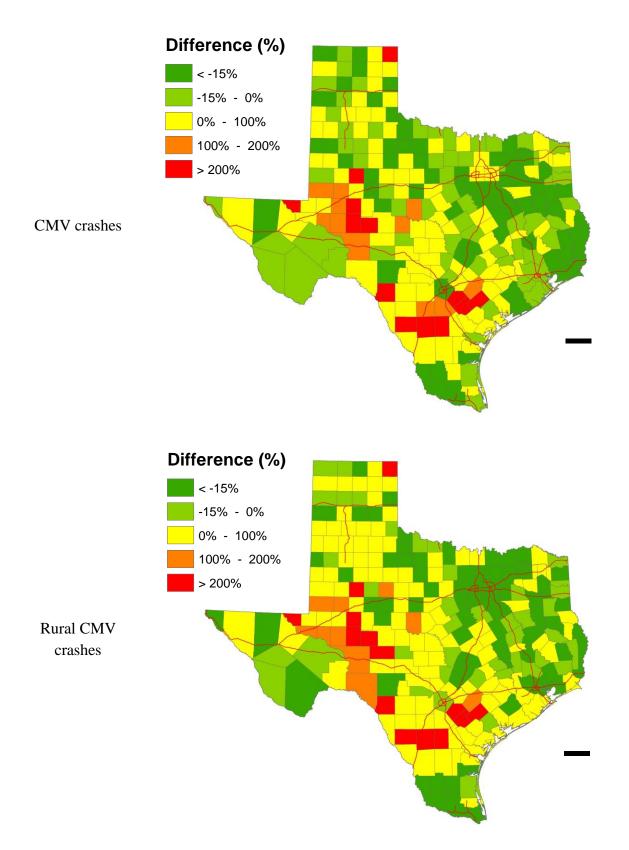
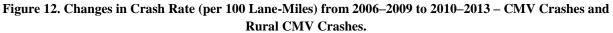




Figure 11. Changes in Crash Rate (per 100 Lane-Miles) from 2006–2009 to 2010–2013 – All Crashes and Rural Crashes.

Correlations

The research team used the Pearson product-moment correlation coefficient to compare pairs of metrics using historical data aggregated at the county level. As a reference, a Pearson coefficient of -1 between any two variables indicates total negative correlation, 0 indicates no correlation, and +1 indicates total positive correlation. As the absolute value of the Pearson coefficient increases, the linear correlation between the two variables increases. Table 26 provides a rudimentary way to interpret Pearson correlation coefficients. The literature contains a variety of threshold alternatives and statistical procedures to measure the significance of the Pearson coefficient.

From/To (Positive)	From/To (Negative)	Correlation Strength
+0.70 to +1.00	–0.70 to –1.00	Very strong
+0.40 to +0.69	–0.40 to –0.69	Strong
+0.30 to +0.39	–0.30 to –0.39	Moderate
+0.20 to +0.29	–0.20 to –0.29	Weak
0.00 to +0.19	0.00 to -0.19	No or negligible

Table 26. Rudimentary Thresholds to Interpret Pearson Correlation Coefficients.

Table 27 summarizes the results of the analysis, using eight years of data from 2006 through 2013. In the Barnett Shale region, there was a strong correlation between the number of new horizontal wells and the number of crashes (regardless of location or type of vehicles involved). The correlation between the number of new vertical wells and the number of crashes was weak to negligible.

		Number	r of New	Number	of New
		Horizon	tal Wells	Vertica	l Wells
	Number of Crashes		0 .56		-0.15
Barnett Shale	Number of Rural Crashes		0.62		-0.24
Region	Number of CMV Crashes		0.52		-0.19
	Number of Rural CMV Crashes		0.63		-0.10
	Number of Crashes		0.12		0.16
Eagle Ford	Number of Rural Crashes		-0.07		-0.22
Shale Region	Number of CMV Crashes		0.39		0.09
	Number of Rural CMV Crashes		0.57		-0.10
	Number of Crashes		-0.08		0.07
Permian	Number of Rural Crashes		0.03		0.33
Basin Region	Number of CMV Crashes		0.06		0.29
	Number of Rural CMV Crashes		0.23		0.47
	Number of Crashes		-0.04		-0.03
Remaining	Number of Rural Crashes		-0.03		0.00
175 Counties	Number of CMV Crashes		-0.02		-0.02
	Number of Rural CMV Crashes		0.00		0.06

 Table 27. Pearson Correlation Coefficients.

In the Eagle Ford Shale region, there was a strong correlation between the number of new horizontal wells and the number of rural CMV crashes. There was also a moderate correlation between the number of horizontal wells and the number of CMV crashes. All other correlations were weak to negligible.

In the Permian Basin region, there was a strong correlation between the number of new vertical wells and the number of rural CMV crashes. There was also a moderate correlation between the number of new vertical wells and the number of rural crashes and the number of CMV crashes. All other correlations were weak to negligible.

Based on these results, the research team focused further on rural CMV-related crashes, more specifically, to establish potential correlations between changes in the number of rural CMV crashes from 2006–2009 to 2010–2013 at the county level and the corresponding changes in the number of new horizontal and vertical wells. Because of some uncertainties regarding the number of crashes resulting in unknown and possible injuries, the research team decided to focus on fatal, incapacitating, and non-incapacitating injury crashes. Table 28 shows the corresponding Pearson correlation coefficients.

Table 28. Pearson Correlation Coefficients – Change in the Number of Rural KAB CMV Crashes vs. Change
in the Number of New Wells from 2006–2009 to 2010–2013.

		•	Number of ontal Wells	Change in Number of New Vertical Wells		
Barnett Shale Region	Change in		0.88		-0.25	
Eagle Ford Shale Region	Numbe of		0.77		0.03	
Permian Basin Region	Rural KAB		0.22		0.72	
Remaining 175 Counties	CMV Crashes		-0.04		0.31	

In the Barnett Shale region, there was a very strong correlation between the change in the number of new horizontal wells and that of rural CMV crashes. In the Eagle Ford Shale region, the correlation between these two variables was also very strong. In the Permian Basin region, there was a strong correlation between the change in the number of new vertical wells and that of rural CMV crashes. Other correlations were weak to negligible.

Figure 13 shows a scatter plot of the change in the number of rural KAB CMV crashes versus the change in the number of new horizontal wells. Each point on the scatter plot corresponds to one county. Figure 13 also shows linear regression lines for county-level data from the Eagle Ford Shale, Barnett Shale, and Permian Basin regions. These regression models could be used for forecasting purposes in situations where other factors remain reasonably stable, and there is a need for high-level estimates.

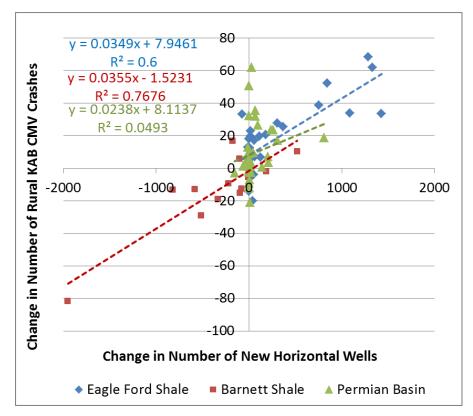


Figure 13. Change in the Number of Rural KAB CMV Crashes vs. Change in the Number of Horizontal Wells.

Overall, the predictive power of the regression models is much higher for the Eagle Ford Shale and Barnett Shale regions than for the Permian Basin region. Nevertheless, the similarity between the trends for the Eagle Ford Shale and the Barnett Shale regions in Figure 13 suggests a generalized trend that could be used to estimate positive (or negative) changes in the number of rural KAB CMV crashes in Texas as a function of the positive (or negative) change in the number of new completed horizontal wells. For example, for a county with 1,000 new horizontal wells over four years, the anticipated increase in the number of rural KAB CMV crashes could be 40. Similarly, for a county with 2,000 fewer new horizontal wells over four years, the anticipated decrease in the number of rural KAB CMV crashes could be about 70.

The research team also developed statistical models to account for differences at the individual county level. The initial dataset included 2,032 records (one record per year per county) from 2006–2013. The research team used 2006–2012 data for model calibration and 2013 data for model validation. Initially, the research team explored several combinations of independent variables and variable selection methods, and used Bayesian analysis to improve model accuracy. After noticing that the corresponding improvement was negligible (compared to simpler non-Bayesian models), the research team developed three models that met an expectation of simplicity for potential implementation:

Model 1 (ordinary least squares regression model):

$$Y_i = 0.0281 \times H_i + 0.0155 \times V_i + 7.34 \times 10^{-6} \times VMT_i + \varepsilon_i$$

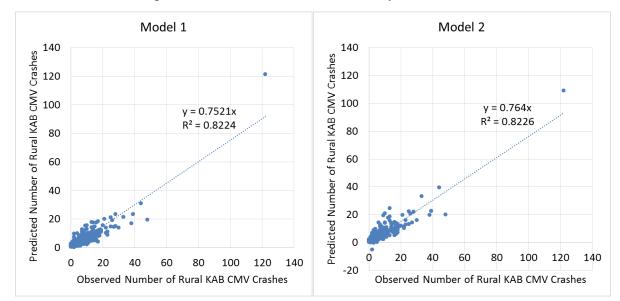
Model 2 (ordinary least squares regression model):

$$Y_i = \beta_i + 0.0349 \times H_i + 0.0156 \times V_i + \varepsilon_i$$

Model 3 (analysis of covariance (ANCOVA) model):

 $E(Transformed Y_i) = -10.6 + \beta_i + 0.00428 \times H_i + 0.00219 \times V_i + 2.26 \times \log(VMT_i) + \varepsilon_i$ or

$$Y_i = (-10.6 + \beta_i + 0.00428 \times H_i + 0.00219 \times V_i + 2.26 \times \log(VMT_i))^2 - \frac{3}{8} + \varepsilon_i$$


where

i	= County of interest (1 through 254)
Y _i	= Number of rural KAB CMV crashes on state and county roads per year in county <i>i</i>
Transformed Y _i	$=(Y_i+\frac{3}{8})^{1/2}$
$E(Transformed Y_i)$	= Mean value of <i>Transformed</i> Y_i
H_i	= Number of new horizontal wells per year in county i
V_i	= Number of new vertical wells per year in county i
VMT _i	= VMT on state roads per year in county i
eta_i	= Coefficient for county i
ε_i	= Random error for county i

The appendix provides a list of all the coefficients and other relevant data related to the statistical analysis conducted to develop Models 1,2, and 3.

All independent variables used in the models are statistically significant at the 95 percent confidence interval. In all three models, the beta coefficient for H_i was larger than the beta coefficient for V_i , suggesting that an increase in the number of new horizontal wells is likely to yield more crashes, compared to the same increase in the number of new vertical wells. This is consistent with field observations, which point to a significantly larger number of trucks needed to develop horizontal wells compared to the number of trucks needed to develop vertical wells.

Figure 14 shows a comparison between the observed number of rural KAB CMV crashes in 2013 and the predicted values using the three models. Overall, the predictive power (\mathbb{R}^2) of Model 1 was similar to that of Model 2, but Model 3 outperformed the other two models. Nevertheless, F-test and two-sample t-test results showed that the means of the predicted values and the variances of the predicted values were not statistically different.

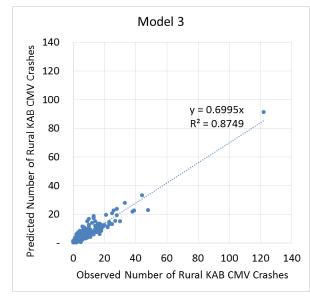


Figure 14. Observed versus Predicted Number of Rural KAB CMV Crashes in 2013.

To understand the similarities and differences between models further, the research team classified counties into three groups based on the 33^{rd} and the 66^{th} percentiles of the observed number of rural KAB CMV crashes in 2013: low (0–3), medium (4–9), and high (>10). Then, the research team estimated the average coefficient of variation (ACV) for every group within each region, as follows:

$$ACV_{i} = \frac{1}{n} \times \sum_{i=1}^{n} \frac{\sqrt{\left(Y_{i, predicted} - \overline{Y}_{i}\right)^{2} + \left(Y_{i, observed} - \overline{Y}_{i}\right)^{2}}}{\overline{Y}_{i}} \times 100$$

where

n	= Number of counties in Texas (254)
$Y_{i,predicted}$	= Predicted number of crashes in county i
$Y_{i,observed}$	= Observed number of crashes in county i
\overline{Y}_{l}	= Average of $Y_{i,predicted}$ and $Y_{i,observed}$

Table 29 shows ACV values for all three models. In general, ACVs were higher for groups of counties with the lowest number of rural KAB CMV crashes, and decreased as the number of rural KAB CMV crashes increased. With a few exceptions, there were not significant differences between the models within each group, indicating that any of the models would perform adequately in most cases.

Region	Number of Rura KAB CMV Crashe per County (2013	S Number of	ACV (Model 1)	ACV (Model 2)	ACV (Model 3)
	Low: 0-3	4	5 <mark>3.5%</mark>	117.1%	29.3%
Barnett Shale	Medium: 4-9	5	14.9%	17.9%	18.8%
	High: >10	4	44.0%	39.0%	40.7%
Eagle Ford	Low: 0-3	0	-	-	-
-	Medium: 4-9	14	30.1%	33.0%	27.0%
Shale	High: >10	15	27.5%	28.5%	27.2%
Permian	Low: 0-3	13	77.2%	76.2%	76.7%
	Medium: 4-9	11	27.8%	36.3%	27.0%
DdSIII	e Ford aleMedium: 4-914 30.1% 33.0% 2High: >101527.5\%28.5\%2mian sinLow: 0-31377.2%76.2%7High: >101127.8%36.3%2High: >101338.7%46.7%4Low: 0-37048.8%55.2%5	40.3%			
Pompining	Low: 0-3	70	48.8%	55.2%	51.3%
175 Counties	Medium: 4-9	68	34.0%	30.5%	29.5%
175 Counties	High: >10	37	36.1%	26.2%	29.8%
	Low: 0-3		53.3%	61.2%	E4 19/
	Medium: 4-9		40.1%		
	High: >10		3 5.2%	31.3%	31.8%

 Table 29. Average Coefficient of Variation.

Economic Impact of Crashes

The research team developed preliminary estimates of the change in the cost of injuries from 2006–2009 to 2010–2013 using standardized economic and comprehensive crash cost estimates from NSC and comprehensive crash cost estimates from U.S. DOT (3, 4).

Economic costs rely on calculable costs such as wage and productivity losses, medical expenses, administrative expenses, motor vehicle damage, and employers' uninsured costs. Comprehensive costs include economic cost components and a measure of the value of lost quality of life, which makes comprehensive costs appropriate to analyze the anticipated benefit of future improvements (because they provide a measure of what people would be willing to pay for improved safety). In general, the U.S. DOT's methodology for comprehensive cost estimates, which are based on a concept called the value of a statistical life, are considerably higher than those resulting from the NSC methodology.

Economic costs in 2013 dollars, according to the NSC methodology, are as follows:

•	Death:	\$1,500,000
•	Incapacitating injury (i.e., Class A):	\$74,900
•	Non-incapacitating injury (i.e., Class B):	\$24,000

• Possible injury (i.e., Class C): \$13,600

Comprehensive costs include both the economic cost components above and a measure of the value of lost quality of life, and are therefore appropriate to use as a reference to analyze the anticipated benefit of future improvements (because they provide a measure of what people would be willing to pay for improved safety). In 2013 dollars, comprehensive costs of motor vehicle crashes are as follows:

•	Death	\$4,628,000
•	Incapacitating injury	\$235,400
•	Non-incapacitating evident injury	\$60,000
•	Possible injury	\$28,600

These dollar amounts do not include property damage-only crashes.

According to the U.S. DOT methodology, VSL was \$9.1 million in 2012 dollars. For subsequent years, the methodology recommends adjusting this value using a 1.07 percent annual growth rate. In 2014 dollars, adjusted VSL was \$9,295,782. The guidance also includes six injury severity levels, each one with a factor to estimate the corresponding comprehensive cost, as shown in Table 30.

Severity Level	Fraction of VSL	Comprehensive Cost Adjusted for 2014	Corresponding Type of Injury Used in the Analysis	Estimated Comprehensive Cost
Minor	0.003	\$27,887	Possible Injury	\$232,395
Moderate	0.047	\$436,902	POSSIBLE ITIJULY	ŞZSZ,595
Serious	0.105	\$976,057	Non-Incapacitating	\$976,057
Severe	0.266	\$2,472,678	Inconscitating	\$3,992,538
Critical	0.593	\$5,512,399	Incapacitating	۶۵,۶۶۷۷,۵۵۵
Un-survivable	1.000	\$9,295,782	Fatal	\$9,295,782

 Table 30. Injury Severity Levels and Estimated Comprehensive Costs (Adapted from 4).

The severity levels in Table 30 provide a measure of survivability using the abbreviated injury scale, which is different from the system of classification of injuries in CRIS. This is a common problem reflecting different practices between police agencies (which normally complete crash reports) and health providers (which care for the injured). Information on how to map injury levels from one system to the other is not available. For simplicity, the research team assumed that possible injuries in CRIS captured a large percentage of minor and moderate injuries, non-incapacitating injuries in CRIS captured serious injuries, incapacitating injuries in CRIS included severe and critical injuries, and fatal injuries in CRIS corresponded to un-survivable injuries.

Table 30 shows the result of this mapping process, along with the corresponding comprehensive costs for each injury level in CRIS.

Table 31 summarizes the result of the analysis. Because the correlation between new completed wells and rural CMV crashes was stronger than for other types of crashes, the research team only included the number of injuries resulting from rural CMV crashes. Further, the research team only included the number of fatal, incapacitating, non-incapacitating, and possible injuries in the cost calculation. In the Barnett Shale region, there was a 35 percent decrease (i.e., \$73 million in economic costs or \$425 million in comprehensive costs) in NSC-based costs and a 30 percent decrease (i.e., \$763 million) in VSL-based comprehensive costs. The cost reduction was the result of fewer rural CMV crashes and, correspondingly, fewer injuries. In the Eagle Ford Shale region, there was a 52 percent increase (i.e., \$139 million in economic costs or \$419 million in comprehensive costs) in NSC-based costs and a 68 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs) in NSC-based costs and a 68 percent increase (i.e., \$176 million in comprehensive costs) in NSC-based costs and a 69 percent increase (i.e., \$176 million in comprehensive costs) in NSC-based costs and a 69 percent increase (i.e., \$176 million in comprehensive costs) in NSC-based costs and a 69 percent increase (i.e., \$176 million in economic costs or \$1.03 billion in comprehensive costs) in NSC-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs.

Table 31. Changes in Economic and Comprehensive Costs for Injuries Occurred in Rural CMV Crashes.

	Cost of Rural CMV Injuries (Million)													
Region	E	conomic C	ost (NSC)		Comprehensive Cost (NSC)				Comprehensive Cost (VSL)					
Region	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.		
Barnett Shale	\$ 212	\$ 138	\$ (73)	-35%	\$ 1,224	\$ 799	\$ (425)	-35%	\$ 2,510	\$ 1,747	\$ (763)	-30%		
Eagle Ford Shale	\$ 269	\$ 408	\$ 139	52%	\$ 1,548	\$ 2,349	\$ 801	52%	\$ 2,931	\$ 4,927	\$1,996	68%		
Permian Basin	\$ 171	\$ 348	\$ 176	0103%	\$ 981	\$ 2,011	\$1,030	0105%	\$ 2,051	\$ 4,045	\$1,994	97%		
Other	\$ 1,615	\$ 1,567	\$ (47)	-3%	\$ 9,229	\$ 8,988	\$ (241)	-3%	\$19,796	\$19,205	\$ (591)	-3%		
Grand Total	\$ 2,266	\$ 2,461	\$ 194	9%	\$12,981	\$14,146	\$1,165	9%	\$27,288	\$29,924	\$2,636	🥚 10%		

The huge increase in the cost of injuries resulting from rural CMV crashes in the Eagle Ford Shale and Permian Basin regions (covering 66 counties in total) was largely responsible for the net increase in the cost of injuries resulting from rural CMV crashes in the state from 2006–2009 to 2010–2013. As Table 31 shows, the net increase was 9 percent overall, even though there was a 35 percent reduction in the Barnett Shale region (covering 13 counties) and a 3 percent reduction in 175 other counties around the state.

Chapter 3. Findings

In fall 2014, the Texas Legislature asked TTI to update a study completed in late 2011 documenting locations and trends of oil and gas energy developments in the state (1). As part of the study, the Texas Legislature asked TTI to correlate oil and gas developments with changes in pavement condition data. TTI summarized the results of this analysis in a report published in March 2015 (2).

To complement the study, the Texas Legislature asked TTI to gather and process crash data at a level of spatial and temporal detail needed to document locations and trends of crashes in relation to oil and gas energy developments in the state. To accomplish this goal, the research team gathered and processed data from TxDOT's Crash Record Information System. Available data from CRIS covered the 2010–2014 period. The research team complemented this information with historical crash data from 2003–2009 that TTI had received from TxDOT before the introduction of CRIS.

Location and attribute data about crashes and injuries (i.e., number of people who are injured in crashes) that the research team compiled included the following types of crashes:

- All crashes.
- Rural crashes (i.e., crashes that occur outside city limits).
- CMV crashes (i.e., crashes in which CMVs are involved).
- Rural CMV crashes.
- Crashes on state highways.
- Crashes on rural state highways.
- CMV crashes on state highways.
- CMV crashes on rural state highways.

With this information, the research team examined changes in the number of crashes and the number of injuries from 2006–2009 to 2010–2013. These date ranges were used for consistency with those in the original March 2015 report. The year 2009 was significant because this was when accelerated oil production started in the Eagle Ford Shale region and oil production in the Permian Basin region began to accelerate, making the end of 2009 suitable for use as a baseline for comparison purposes. The last year with reliable Railroad Commission data was 2013 (2014 data were still preliminary). In addition, the economic recession of 2008 caused significant volatility in the oil markets, which resulted in dramatic swings in prices, drilling, and production. In order to reduce the impact of these variations, the research team aggregated and compared data using two four-year blocks: 2006–2009 and 2010–2013.

This chapter replicates tables from Chapter 2, which illustrate the changes. In particular, Table 32 shows changes in the number of crashes on all highways, and Table 33 shows changes in the number of injuries on all highways. Table 32 shows changes in the number of crashes on all highways from 2006–2009 to 2010–2013. In total, the number of crashes decreased by 10 percent in the Barnett Shale region, increased by 1 percent in the Eagle Ford Shale region, and decreased by 4 percent in the Permian Basin region. As a reference, the number of crashes decreased by 7 percent in all other 175 counties in the state.

These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. The changes were more prominent for rural crashes. The changes were even more noticeable for crashes that involved CMVs and, particularly, for rural crashes that involved CMVs. In most cases, as the severity of the injuries worsened, the changes in the corresponding number of crashes were more evident.

Relative changes in the number of crashes on state highways were similar to those found for all highways. The changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. Overall, the percentage of crashes occurring on state highways increased. For all crashes, the increase was from 54 to 56 percent. For fatal, incapacitating, and non-incapacitating injury crashes, the increase was from 59 to 61 percent. For fatal crashes, the increase was from 74 to 76 percent. These percentages were higher for rural roads. For example, for rural CMV crashes, the percentage of crashes on state highways decreased slightly from 78 to 77 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 90 to 91 percent. For fatal crashes, it decreased slightly but stayed around 96 percent.

The research team calculated crash rates expressed both as the number of crashes per 100 million VMT and number of crashes per 100 lane-miles. The results were similar with both approaches, although rates expressed as number of crashes per 100 lane-miles were more stable particularly for roadway segments with low traffic volumes. Table 34 shows the changes in the number of crashes over four years per 100 lane-miles from 2006–2009 to 2010–2013. In total, the crash rate decreased by 4 percent in the Barnett Shale region, increased by 7 percent in the Eagle Ford Shale region, and increased by 11 percent in the Permian Basin region. These changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region. The changes were more prominent for rural crashes. The changes were even more evident for crashes that involved CMVs and, in particular, for rural CMV crashes. In most cases, as the severity of the injuries worsened, the changes in the corresponding crash rate were more evident.

Table 32. Changes in the Number of Crashes on All Highways.

Note: Green dots correspond to decreases in the number of crashes (desirable trend). Red dots correspond to increases in the number of crashes (undesirable trend).

		Number of Crashes (Fatal, Incapacitating, Non-Incapacitating, Possible Injury, No-Injury, Unknown)												
Region	Region All				Rural		CMV-Involved			Rural & CMV-Involved				
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	184,735	166,474	-10%	24,572	18,521	-25%	14,119	12,367	-12%	3,130	2,061	-34%		
Eagle Ford Shale	85,964	86,744	9 1%	27,660	28,804	4 %	6,607	8,708	932%	2,820	4,542	61%		
Permian Basin	80,891	77,511	-4%	15,689	17,426	🥚 11%	4,775	6,368	933%	2,464	3,743	52%		
Other	1,410,907	1,306,749	-7%	288,715	284,431	-1%	90,081	77,755	-14%	26,221	23,942	-9%		
Grand Total	1,762,497	1,637,478	-7%	356,636	349,182	-2%	115,582	105,198	-9%	34,635	34,288	-1%		

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

		Number of Fatal, Incapacitating, Non-Incapacitating Crashes												
Region	All			Rural			CMV-Involved			Rural	Rural & CMV-Involved			
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	31,739	30,728	-3%	5,346	4,165	-22%	2,124	1,846	-13%	642	474	-26%		
Eagle Ford Shale	14,382	15,264	6%	6,889	6,948	9 1%	1,096	1,641	50%	662	1,173	0 77%		
Permian Basin	11,520	12,019	6 4%	3,841	4,524	🥚 18%	883	1,333	6 51%	617	971	0 57%		
Other	204,134	201,541	-1%	57,296	54,123	-6%	12,568	11,792	-6%	4,998	4,751	-5%		
Grand Total	261,775	259,552	-1%	73,372	69,760	-5%	16,671	16,612	0%	6,919	7,369	0 7%		

		Number of Fatal Crashes												
Region	All			Rural			CMV-Involved			Rural	Rural & CMV-Involved			
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	1,202	1,030	-14%	459	325	-29%	181	135	-25%	101	63	-37%		
Eagle Ford Shale	851	902	6%	629	694	🥚 10%	129	204	58%	102	179	7 6%		
Permian Basin	648	789	9 22%	430	518	0 20%	94	183	94%	80	151	88%		
Other	9,465	8,954	-5%	4,673	4,293	-8%	1,177	1,170	-1%	663	684	3%		
Grand Total	12,166	11,675	-4%	6,191	5,830	-6%	1,582	1,692	9 7%	946	1,077	9 14%		

Table 33. Changes in the Number of Injuries on All Highways.

Note: Green dots correspond to decreases in the number of injuries (desirable trend). Red dots correspond to increases in the number of injuries (undesirable trend).

		Number of Injuries (Fatal, Incapacitating, Non-Incapacitating, Possible Injury, No-Injury, Unknown)												
Region	All			Rural			CMV-Involved			Rural & CMV-Involved				
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	521,304	446,866	-14%	58,038	38,861	-33%	56,707	37,827	-33%	14,923	5,518	63%		
Eagle Ford Shale	241,484	230,497	-5%	63,650	61,679	-3%	28,518	24,812	-13%	19,625	11,395	-42%		
Permian Basin	225,483	202,170	-10%	37,286	37,788	9 1%	16,734	16,109	-4%	7,992	8,580	0 7%		
Other	4,003,334	3,546,753	-11%	738,597	691,735	-6%	370,987	254,011	-32%	109,719	72,430	-34%		
Grand Total	4,991,605	4,426,286	-11%	897,571	830,063	-8%	472,946	332,759	-30%	152,258	97,923	-36%		

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

		Number of Fatal, Incapacitating, Non-Incapacitating Injuries											
Region	Region All				Rural		CN	/IV-Involve	d	Rural & CMV-Involved			
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	
Barnett Shale	42,345	40,919	-3%	7,285	5,609	-23%	2,823	2,452	-13%	840	627	-25%	
Eagle Ford Shale	20,637	21,945	6%	10,207	10,257	0%	1,654	2 <i>,</i> 385	9 44%	1,006	1,755	0 75%	
Permian Basin	15,704	16,515	5%	5,591	6,632	🥚 19%	1,115	1,868	67%	786	1,379	976%	
Other	278,208	273,913	-2%	80,963	75,957	-6%	17,635	16,385	-7%	6,920	6,779	-2%	
Grand Total	356,894	353,292	-1%	104,046	98,455	-5%	23,228	23,090	-1%	9,552	10,540	🥚 10%	

		Number of Fatal Injuries												
Region		All		Rural		CMV-Involved			Rural & CMV-Involved					
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	1,294	1,125	-13%	499	364	-27%	201	150	9 -26%	111	71	-36%		
Eagle Ford Shale	1,002	1,047	6 4%	763	825	8%	169	237	40%	143	211	6 47%		
Permian Basin	738	914	9 24%	499	619	9 24%	103	224	0 117%	88	184	0109%		
Other	10,562	9,854	-7%	5,347	4,837	0 -10%	1,433	1,326	-7%	813	797	-2%		
Grand Total	13,596	12,940	-5%	7,108	6,645	-7%	1,907	1,937	2%	1,155	1,263	9%		

Table 34. Number of Crashes over Four Years per 100 Lane-Miles.

Note: Green dots correspond to decreases in crash rates (desirable trend). Red dots correspond to increases in crash rates (undesirable trend).

		Fatal, Incapacitating, Non-Incapacitating, Possible Injury, No-Injury, Unknown Crash Rates													
Region All				Rural			CN	/IV-Involv	ed	Rural & CMV-Involved					
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.			
Barnett Shale	777.9	743.7	-4%	230.2	177.9	-23%	76.5	70.8	-8%	35.9	24.8	-31%			
Eagle Ford Shale	261.2	278.4	9 7%	123.4	133.2	8%	24.1	34.4	9 43%	14.4	23.7	65%			
Permian Basin	169.2	187.5	🥚 11%	59.8	69.9	🥚 17%	15.9	22.6	9 42%	10.9	16.8	54%			
Other	532.2	505.5	-5%	184.7	173.2	6%	44.3	40.2	9% 🔵	21.2	19.4	9%			

(a) All crashes

(b) Fatal, incapacitating, and non-incapacitating injury crashes

		Fatal, Incapacitating, Non-Incapacitating Crash Rates													
Region All			Rural				CMV-Involved				Rural & CMV-Involved				
	2006-09	2010-13	Diff.	2006-09	2010-13	D	Diff.	2006-09	2010-13	0	Diff.	2006-09	2010-13	[Diff.
Barnett Shale	142.4	143.1	0%	54.0	42.6	\bigcirc	-21%	12.8	11.5	\bigcirc	-10%	8.2	6.1		-26%
Eagle Ford Shale	48.9	53.6	🥚 10%	31.9	33.3	\bigcirc	4%	4.7	7.2	\bigcirc	53%	3.6	6.2		74%
Permian Basin	28.3	34.0	0 20%	15.2	18.7	\bigcirc	23%	3.3	5.1	\bigcirc	54%	2.8	4.4		57%
Other	83.6	84.0	0%	40.5	37.5	\bigcirc	-7%	7.1	6.9		-2%	4.5	4.3		-4%

		Fatal Crash Rates												
Region All				Rural			CN	/IV-Involv	ed	Rural & CMV-Involved				
	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.	2006-09	2010-13	Diff.		
Barnett Shale	6.8	5.8	🥘 -14%	5.2	3.8	-27%	1.3	0.9	-27%	1.4	0.8	-40%		
Eagle Ford Shale	3.5	3.8	9%	3.2	3.5	🥚 10%	0.6	1.0	60%	0.6	1.0	0 75%		
Permian Basin	2.1	2.8	934%	1.8	2.2	28%	0.4	0.7	83%	0.4	0.7	976%		
Other	5.0	4.7	-5%	3.8	3.4	-10%	0.8	0.8	-1%	0.6	0.7	6 4%		

The research team established correlations by comparing pairs of metrics representing historical data aggregated at the county level. In the Barnett Shale region, there was a strong correlation between the number of new horizontal wells and the number of crashes (regardless of location or type of vehicles involved). In the Eagle Ford Shale region, there was a strong correlation between the number of new horizontal wells and the number of rural CMV crashes. In the Permian Basin region, there was a strong correlation between the number of rural CMV crashes. It is worth noting that in the Permian Basin, although the relative change in the number of new vertical wells was considerably higher than for vertical wells, in absolute terms the number of new vertical wells was much higher than the number of new horizontal wells. Judging from the trends in the Eagle Ford Shale and Barnett Shale regions, as the industry shifts from vertical drilling to horizontal drilling in the Permian Basin, the correlation between new horizontal wells and rural CMV crashes in that part of the state will likely increase.

In the Barnett Shale region, there was a very strong correlation between the *change* in the number of new horizontal wells and the *change* in the number of rural CMV crashes. In the Eagle Ford Shale region, the correlation between these two variables was also very strong. In the Permian Basin region, there was a strong correlation between the change in the number of new vertical wells and that of rural CMV crashes.

The research team used this information to develop regression models for county-level data from the Eagle Ford Shale, Barnett Shale, and Permian Basin regions that could be used for forecasting purposes in situations where other factors remain reasonably stable and there is a need for high-level estimates. These models suggest a generalized trend that could be used to estimate positive (or negative) changes in the number of rural CMV crashes in Texas as a function of the positive (or negative) change in the number of new horizontal wells.

The research team also developed statistical models to account for differences at the individual county level. The result of the modeling effort was three models: two least squares regression models and an analysis of covariance model with a transformed independent variable. The models were calibrated using data from 2006–2012 and validated using data from 2013.

The research team developed preliminary estimates of the change in the cost of injuries from 2006–2009 to 2010–2013 using standardized economic and comprehensive crash cost estimates from NSC and comprehensive crash cost estimates from U.S. DOT. Because the correlation between new completed wells and rural CMV crashes was stronger than for other types of crashes, the research team only included the number of injuries in rural CMV crashes. Further, the research team only included the number of fatal, incapacitating, non-incapacitating, and possible injuries in the calculation.

Table 35 summarizes the result of the analysis. In the Barnett Shale region, there was a 35 percent decrease (i.e., \$73 million in economic costs or \$425 million in comprehensive costs) in NSC-based costs and a 30 percent decrease (i.e., \$763 million) in VSL-based comprehensive costs. The cost reduction was the result of fewer rural CMV crashes and, correspondingly, fewer

injuries. In the Eagle Ford Shale region, there was a 52 percent increase (i.e., \$139 million in economic costs or \$419 million in comprehensive costs) in NSC-based costs and a 68 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs. In the Permian Basin region, there was a 103 percent increase (i.e., \$176 million in economic costs or \$1.03 billion in comprehensive costs) in NSC-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based costs and a 97 percent increase (i.e., \$2 billion) in VSL-based comprehensive costs.

Table 35. Changes in Economic and Comprehensive Costs for Injuries Occurred in Rural CMV Crashes.

Cost of Rural CMV Injuries (Million)												
Region	E	conomic C	cost (NSC)		Com	prehensiv	e Cost (N	ISC)	Comprehensive (VSL)			
	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.	2006-09	2010-13	Change	Diff.
Barnett Shale	\$ 212	\$ 138	\$ (73)	-35%	\$ 1,224	\$ 799	\$ (425)	-35%	\$ 2,510	\$ 1,747	\$ (763)	-30%
Eagle Ford Shale	\$ 269	\$ 408	\$ 139	6 52%	\$ 1,548	\$ 2,349	\$ 801	6 52%	\$ 2,931	\$ 4,927	\$1,996	68%
Permian Basin	\$ 171	\$ 348	\$ 176	0103%	\$ 981	\$ 2,011	\$1,030	0105%	\$ 2,051	\$ 4,045	\$1,994	97%
Other	\$ 1,615	\$ 1,567	\$ (47)	-3%	\$ 9,229	\$ 8,988	\$ (241)	-3%	\$19,796	\$19,205	\$ (591)	-3%
Grand Total	\$ 2,266	\$ 2,461	\$ 194	9%	\$12,981	\$14,146	\$1,165	9%	\$27,288	\$29,924	\$2,636	🥚 10%

The huge increase in the cost of injuries resulting from rural CMV crashes in the Eagle Ford Shale and Permian Basin regions (covering 66 counties in total) was largely responsible for the net increase in the cost of injuries resulting from rural CMV crashes in the state from 2006–2009 to 2010–2013. As Table 35 shows, the net increase was 9 percent overall, even though there was a 35 percent reduction in the Barnett Shale region (covering 13 counties) and a 3 percent reduction in 175 other counties around the state.

In practical terms, the research results mean the following:

- The number of crashes and resulting injuries increased along with oil and gas well development activities, but the changes were not uniform either by crash location and type of vehicles involved or by injury severity. There were also significant differences geographically within each region.
- The increases in the number of crashes and injuries were more prominent in rural areas where energy developments take place (i.e., Eagle Ford Shale and Permian Basin regions). The highest increase was in the case of rural CMV crashes. Overall, there was a strong correlation between rural CMV crashes and the number of new wells.
- The percentage of crashes on state highways increased. As the severity of the injuries increased, the percentage of crashes on state highways also increased. For rural CMV crashes, the percentage of crashes on state highways increased from 81 to 83 percent. For fatal, incapacitating, and non-incapacitating injury crashes, this percentage increased from 89 to 90 percent. For fatal crashes, it increased slightly but stayed around 95 percent.

The cost of injuries resulting from rural CMV crashes in energy development regions increased significantly and was largely responsible for the net increase in the cost of injuries resulting from rural CMV crashes in the state from 2006–2009 to 2010–2013. In the Eagle Ford Shale region, the increase was \$139 million in economic costs or \$419 million–\$2 billion in comprehensive costs. In the Permian Basin region, the increase was \$176 million in economic costs or \$1.03–2.0 billion in comprehensive costs. These costs are of the same order of magnitude as the impact of energy developments on the transportation infrastructure (estimated at \$1 billion per year on state highways and an additional \$1 billion on county and local roads).

References

- 1. Quiroga, C., Fernando, E. and Oh, J. *Energy Developments and the Transportation Infrastructure in Texas: Impacts and Strategies.* Report FHWA/TX-12/0-6498-1, Texas Transportation Institute, Project 0-6498, March 2012.
- Quiroga, C., Tsapakis, I., Kraus, E., Le, J., and Wimsatt, A. *Oil and Gas Energy Developments and Changes in Pavement Conditions in Texas*. Final Report. Report PRC 14-35F. Transportation Policy Center, Texas A&M Transportation, College Station, Texas, March 2015.
- 3. Estimating the Cost of Unintentional Injuries, 2013. National Safety Council, Itasca, Illinois, 2015.
- 4. Treatment of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses. Office of the Secretary of Transportation, U.S. Department of Transportation, 2013.

Appendix

This appendix provides relevant data related to the statistical analysis conducted to develop Model 1 (Table 36), Model 2 (Table 37), and Model 3 (Table 38).

Parameter	R	Standard	t Significance -		95% Cor Inte	nfidence rval	Partial Eta
Faranieter	β	Error	L	Significance	Lower	Upper	Squared
					Bound	Bound	oquarea
H _i	0.0281	0.002	18.007	1.02E-66	0.0250	0.0311	0.154
Vi	0.0155	0.001	14.643	6.40E-46	0.0135	0.0176	0.108
VMT _i	7.34E-06	7.51E-08	97.768	1.12E-74	7.19E-06	7.49E-06	0.843

 Table 36. Summary Results of Statistical Analysis for Model 1.

Table 37. Summary Results of Statistical Analysis for Model 2.

Parameter	β	Standard	t	Significance		nfidence rval	Partial Eta
T di difficter	μ	Error	·	Significance	Lower	Upper	Squared
					Bound	Bound	
H _i	0.0349	0.00232	15.01	1.26E-47	.0303	.0395	0.129
V _i	0.0156	0.00172	9.07	3.67E-19	.0122	.0190	0.0512
	Parar	neter Estima	tes for Co	unties in the Ba	rnett Shale F	Region	
Cooke	3.60	1.30	2.78	5.51E-03	1.06	6.15	5.05E-03
Denton	6.58	1.34	4.91	9.88E-07	3.95	9.20	1.56E-02
Erath	7.45	1.29	5.76	9.98E-09	4.92	9.99	2.14E-02
Hill	9.50	1.29	7.34	3.42E-13	6.96	12.0	3.42E-02
Hood	5.24	1.32	3.98	7.19E-05	2.66	7.82	1.03E-02
Jack	2.20	1.30	1.69	9.05E-02	-0.347	4.74	1.88E-03
Johnson	7.74	1.71	4.54	6.20E-06	4.39	11.1	1.33E-02
Montague	5.66	1.31	4.32	1.70E-05	3.09	8.24	1.21E-02
Palo Pinto	5.87	1.29	4.54	6.11E-06	3.34	8.41	1.34E-02
Parker	11.7	1.35	8.61	1.74E-17	9.01	14.3	4.65E-02
Somervell	3.81	1.29	2.95	3.21E-03	1.28	6.35	5.69E-03
Tarrant	-8.24	1.74	-4.75	2.24E-06	-11.7	-4.84	1.46E-02
Wise	12.0	1.36	8.86	2.20E-18	9.35	14.7	4.90E-02
	Param	eter Estimate	es for Cour	nties in the Eag	e Ford Shale	Region	
Atascosa	8.39	1.29	6.48	1.23E-10	5.85	10.9	2.69E-02
Bastrop	11.3	1.29	8.77	4.80E-18	8.79	13.9	4.81E-02
Bee	2.79	1.29	2.16	3.11E-02	0.254	5.33	3.05E-03
Brazos	4.71	1.29	3.64	2.82E-04	2.17	7.24	8.63E-03
Burleson	4.39	1.29	3.40	7.01E-04	1.85	6.92	7.52E-03

						nfidence	D 15.
Parameter	β	Standard	t	Significance		erval	Partial Eta
	P	Error	-	8	Lower	Upper	Squared
					Bound	Bound	
Caldwell	3.76	1.29	2.91	3.67E-03	1.23	6.30	5.53E-03
DeWitt	1.74	1.30	1.33	1.82E-01	819	4.30	1.17E-03
Dimmit	-0.0300	1.35	-0.021	9.83E-01	-2.67	2.61	2.95E-07
Duval	3.37	1.29	2.60	9.40E-03	0.827	5.90	4.42E-03
Fayette	8.31	1.29	6.43	1.69E-10	5.78	10.8	2.65E-02
Frio	3.26	1.29	2.52	1.17E-02	0.727	5.80	4.17E-03
Goliad	2.88	1.29	2.23	2.59E-02	0.346	5.42	3.25E-03
Gonzales	6.90	1.30	5.30	1.32E-07	4.35	9.46	1.81E-02
Grimes	9.38	1.29	7.26	6.25E-13	6.84	11.9	3.35E-02
Guadalupe	10.1	1.29	7.81	1.07E-14	7.55	12.6	3.85E-02
Jim Wells	7.37	1.29	5.71	1.39E-08	4.84	9.90	2.09E-02
Karnes	3.81	1.32	2.88	4.05E-03	1.21	6.41	5.41E-03
Lampasas	3.29	1.32	2.48	1.31E-02	0.693	5.89	4.04E-03
Lavaca	3.83	1.29	2.96	3.15E-03	1.29	6.37	5.71E-03
Lee	6.20	1.29	4.80	1.72E-06	3.67	8.74	1.49E-02
Live Oak	6.21	1.29	4.80	1.75E-06	3.67	8.75	1.49E-02
Maverick	-2.57	1.43	-1.80	7.19E-02	-5.37	0.23	2.13E-03
McMullen	4.47	1.30	3.45	5.83E-04	1.92	7.01	7.74E-03
Robertson	13.5	1.30	10.4	1.23E-24	11.0	16.1	6.67E-02
Victoria	8.59	1.29	6.64	4.41E-11	6.05	11.1	2.81E-02
Washington	8.05	1.29	6.23	5.88E-10	5.52	10.6	2.49E-02
Webb	6.40	1.38	4.64	3.72E-06	3.70	9.10	1.40E-02
Wilson	3.25	1.29	2.52	1.20E-02	0.715	5.78	4.14E-03
Zavala	3.07	1.29	2.38	1.75E-02	0.539	5.61	3.70E-03
	Parar	neter Estimat	tes for Co	unties in the Pe	rmian Basin	Region	
Andrews	-2.07	1.71	-1.21	2.26E-01	-5.41	1.28	9.63E-04
Borden	-0.29	1.29	-0.223	8.24E-01	-2.82	2.25	3.26E-05
Cochran	0.870	1.29	0.672	5.01E-01	-1.67	3.40	2.97E-04
Coke	1.87	1.29	1.45	1.48E-01	-0.663	4.41	1.38E-03
Crane	-0.390	1.31	-0.295	7.68E-01	-2.95	2.18	5.73E-05
Crockett	3.68	1.33	2.77	5.65E-03	1.08	6.29	5.02E-03
Crosby	-0.06	1.29	-0.043	9.65E-01	-2.60	2.48	1.24E-06
Dawson	0.48	1.29	0.373	7.10E-01	-2.06	3.02	9.12E-05
Dickens	0.89	1.29	0.691	4.90E-01	-1.64	3.43	3.14E-04
Ector	11.1	1.43	7.76	1.53E-14	8.29	13.9	3.81E-02
Gaines	-0.31	1.32	-0.234	8.15E-01	-2.91	2.29	3.59E-05
Garza	2.82	1.29	2.18	2.92E-02	0.286	5.36	3.12E-03
Glasscock	0.08	1.37	0.058	9.54E-01	-2.61	2.76	2.20E-06
Hockley	4.83	1.30	3.73	2.00E-04	2.29	7.37	9.05E-03
Howard	7.11	1.31	5.41	7.22E-08	4.53	9.68	1.89E-02

						nfidence	
Parameter	β	Standard	t	Significance	Inte	rval	Partial Eta
raranceer	Ρ	Error	•	Significance	Lower	Upper	Squared
					Bound	Bound	
Irion	-0.27	1.30	-0.212	8.33E-01	-2.82	2.27	2.94E-05
Kent	0.21	1.29	0.161	8.72E-01	-2.33	2.74	1.71E-05
Loving	0.01	1.29	0.006	9.95E-01	-2.53	2.55	2.24E-08
Lubbock	6.91	1.29	5.35	1.03E-07	4.37	9.44	1.84E-02
Lynn	2.19	1.29	1.70	8.95E-02	-0.339	4.73	1.89E-03
Martin	6.08	1.30	4.66	3.48E-06	3.52	8.63	1.41E-02
Midland	13.1	1.41	9.32	3.95E-20	10.3	15.9	5.40E-02
Mitchell	4.12	1.33	3.10	1.94E-03	1.52	6.72	6.29E-03
Pecos	5.19	1.33	3.91	9.69E-05	2.58	7.79	9.94E-03
Reagan	-1.10	1.38	-0.801	4.23E-01	-3.80	1.60	4.22E-04
Reeves	5.26	1.30	4.03	5.76E-05	2.70	7.81	1.06E-02
Schleicher	0.86	1.29	0.664	5.07E-01	-1.68	3.39	2.89E-04
Scurry	6.16	1.30	4.74	2.28E-06	3.62	8.71	1.46E-02
Sterling	0.30	1.29	0.235	8.14E-01	-2.24	2.84	3.62E-05
Sutton	3.87	1.30	2.98	2.94E-03	1.32	6.41	5.80E-03
Terrell	1.02	1.29	0.786	4.32E-01	-1.52	3.55	4.06E-04
Terry	1.44	1.29	1.11	2.67E-01	-1.10	3.97	8.09E-04
Tom Green	8.31	1.29	6.43	1.75E-10	5.77	10.8	2.64E-02
Upton	-2.73	1.47	-1.86	6.35E-02	-5.61	0.15	2.26E-03
Ward	0.57	1.34	0.421	6.74E-01	-2.07	3.20	1.16E-04
Winkler	0.41	1.30	0.317	7.51E-01	-2.13	2.96	6.62E-05
Yoakum	0.59	1.31	0.452	6.51E-01	-1.98	3.17	1.34E-04
	F	Parameter Est	timates fo	r the Remaining	g 175 Counti	es	
Anderson	8.40	1.29	6.50	1.07E-10	5.87	10.9	2.70E-02
Angelina	9.02	1.29	6.98	4.43E-12	6.48	11.6	3.10E-02
Aransas	2.03	1.29	1.57	1.16E-01	-0.500	4.57	1.63E-03
Archer	1.65	1.30	1.27	2.04E-01	-0.899	4.20	1.06E-03
Armstrong	2.57	1.29	1.99	4.67E-02	0.038	5.11	2.60E-03
Austin	6.64	1.29	5.14	3.10E-07	4.11	9.18	1.71E-02
Bailey	3.29	1.29	2.54	1.11E-02	0.752	5.82	4.23E-03
Bandera	1.99	1.29	1.54	1.23E-01	-0.540	4.53	1.56E-03
Baylor	2.36	1.29	1.82	6.83E-02	-0.177	4.89	2.18E-03
Bell	9.00	1.29	6.97	4.79E-12	6.47	11.5	3.09E-02
Bexar	21.7	1.29	16.8	3.59E-58	19.2	24.2	1.56E-01
Blanco	1.86	1.29	1.44	1.51E-01	-0.677	4.39	1.36E-03
Bosque	1.77	1.29	1.37	1.71E-01	-0.766	4.30	1.23E-03
Bowie	11.3	1.29	8.73	6.79E-18	8.74	13.8	4.76E-02
Brazoria	13.8	1.29	10.7	1.05E-25	11.3	16.3	6.97E-02
Brewster	1.14	1.29	0.883	3.77E-01	-1.39	3.67	5.12E-04
Briscoe	0.28	1.29	0.219	8.26E-01	-2.25	2.82	3.16E-05

		Standard				nfidence erval	Partial Eta
Parameter	β		t	Significance			
	-	Error			Lower Bound	Upper Bound	Squared
Brooks	4.57	1.29	3.53	4.23E-04	2.03	7.10	8.14E-03
Brown	2.27	1.29	1.76	7.88E-02	-0.262	4.81	2.03E-03
Burnet	5.00	1.29	3.87	1.13E-04	2.47	7.53	9.75E-03
Calhoun	1.46	1.29	1.13	2.58E-01	-1.07	4.00	8.41E-04
Callahan	6.64	1.29	5.14	3.07E-07	4.11	9.18	1.71E-02
Cameron	3.70	1.29	2.87	4.20E-03	1.17	6.24	5.37E-03
Camp	2.27	1.29	1.76	7.85E-02	-0.260	4.81	2.03E-03
Carson	6.34	1.29	4.91	1.01E-06	3.81	8.88	1.56E-02
Cass	9.67	1.29	7.49	1.17E-13	7.14	12.2	3.55E-02
Castro	4.14	1.29	3.21	1.37E-03	1.61	6.68	6.71E-03
Chambers	21.6	1.29	16.7	6.54E-58	19.1	24.2	1.56E-01
Cherokee	8.40	1.29	6.50	1.08E-10	5.87	10.9	2.70E-02
Childress	1.28	1.29	0.990	3.22E-01	-1.25	3.81	6.44E-04
Clay	5.23	1.29	4.04	5.50E-05	2.69	7.76	1.06E-02
Coleman	0.91	1.29	0.708	4.79E-01	-1.62	3.45	3.29E-04
Collin	6.86	1.29	5.31	1.27E-07	4.32	9.39	1.82E-02
Collingsworth	0.85	1.29	0.657	5.12E-01	-1.69	3.38	2.83E-04
Colorado	11.6	1.29	8.99	7.19E-19	9.08	14.2	5.04E-02
Comal	7.00	1.29	5.42	6.96E-08	4.47	9.53	1.89E-02
Comanche	3.10	1.29	2.40	1.64E-02	0.568	5.64	3.78E-03
Concho	1.21	1.29	0.935	3.50E-01	-1.33	3.74	5.74E-04
Coryell	5.13	1.29	3.97	7.49E-05	2.60	7.66	1.03E-02
Cottle	0.34	1.29	0.263	7.93E-01	-2.19	2.87	4.53E-05
Culberson	3.41	1.29	2.64	8.32E-03	0.879	5.95	4.57E-03
Dallam	4.14	1.29	3.20	1.38E-03	1.60	6.67	6.70E-03
Dallas	2.39	1.29	1.85	6.48E-02	-0.147	4.92	2.24E-03
Deaf Smith	6.00	1.29	4.64	3.70E-06	3.47	8.53	1.40E-02
Delta	0.71	1.29	0.553	5.80E-01	-1.82	3.25	2.01E-04
Donley	5.86	1.29	4.53	6.23E-06	3.32	8.39	1.33E-02
Eastland	9.15	1.29	7.08	2.20E-12	6.61	11.7	3.19E-02
Edwards	0.01	1.29	0.010	9.92E-01	-2.52	2.55	6.32E-08
El Paso	8.43	1.29	6.52	9.24E-11	5.89	11.0	2.72E-02
Ellis	9.26	1.29	7.17	1.17E-12	6.73	11.8	3.27E-02
Falls	5.98	1.29	4.63	3.98E-06	3.45	8.51	1.39E-02
Fannin	4.42	1.29	3.42	6.31E-04	1.89	6.96	7.65E-03
Fisher	0.40	1.29	0.309	7.58E-01	-2.14	2.93	6.26E-05
Floyd	0.70	1.29	0.542	5.88E-01	-1.83	3.23	1.93E-04
Foard	-0.100	1.29	-0.076	9.39E-01	-2.63	2.44	3.79E-06
Fort Bend	13.5	1.29	10.4	1.02E-24	11.0	16.0	6.69E-02
Franklin	2.62	1.29	2.03	4.25E-02	0.088	5.16	2.70E-03

Deverator		Standard			95% Cor Inte	nfidence erval	Partial Eta
Parameter	β	Error	t	Significance	Lower Bound	Upper Bound	Squared
Freestone	10.5	1.32	7.96	3.30E-15	7.92	13.1	4.00E-02
Galveston	4.01	1.29	3.10	1.95E-03	1.48	6.54	6.29E-03
Gillespie	3.86	1.29	2.99	2.87E-03	1.32	6.39	5.82E-03
Gray	7.50	1.29	5.80	7.82E-09	4.97	10.0	2.17E-02
Grayson	5.21	1.29	4.03	5.84E-05	2.67	7.74	1.06E-02
Gregg	20.7	1.29	16.0	3.11E-53	18.1	23.2	1.44E-01
Hale	3.98	1.29	3.08	2.10E-03	1.45	6.51	6.20E-03
Hall	2.00	1.29	1.55	1.22E-01	-0.534	4.53	1.57E-03
Hamilton	1.12	1.29	0.870	3.84E-01	-1.41	3.66	4.97E-04
Hansford	1.54	1.29	1.19	2.34E-01	-0.996	4.07	9.31E-04
Hardeman	1.98	1.29	1.53	1.26E-01	-0.558	4.51	1.54E-03
Hardin	8.99	1.29	6.95	5.49E-12	6.45	11.5	3.07E-02
Harris	109.0	1.29	84.4	8.32E-420	106	112	8.24E-01
Harrison	18.6	1.32	14.1	9.09E-43	16.1	21.2	1.16E-01
Hartley	5.48	1.29	4.24	2.36E-05	2.95	8.01	1.17E-02
Haskell	0.96	1.29	0.746	4.56E-01	-1.57	3.50	3.66E-04
Hays	7.43	1.29	5.75	1.07E-08	4.89	9.96	2.13E-02
Hemphill	2.76	1.32	2.09	3.70E-02	0.166	5.35	2.85E-03
Henderson	6.12	1.29	4.74	2.36E-06	3.59	8.65	1.45E-02
Hidalgo	14.2	1.30	10.9	1.00E-26	11.7	16.8	7.25E-02
Hopkins	9.42	1.29	7.29	5.01E-13	6.88	11.9	3.37E-02
Houston	5.84	1.29	4.52	6.58E-06	3.31	8.38	1.33E-02
Hudspeth	12.4	1.29	9.61	2.93E-21	9.88	14.9	5.72E-02
Hunt	11.4	1.29	8.85	2.43E-18	8.89	14.0	4.89E-02
Hutchinson	1.30	1.29	1.01	3.14E-01	-1.23	3.84	6.67E-04
Jackson	4.18	1.29	3.24	1.24E-03	1.65	6.72	6.83E-03
Jasper	6.73	1.29	5.21	2.11E-07	4.20	9.27	1.75E-02
Jeff Davis	1.70	1.29	1.32	1.87E-01	-0.829	4.24	1.14E-03
Jefferson	11.7	1.29	9.08	3.24E-19	9.21	14.3	5.14E-02
Jim Hogg	1.13	1.29	0.875	3.82E-01	-1.40	3.66	5.03E-04
Jones	3.15	1.29	2.44	1.50E-02	0.613	5.69	3.88E-03
Kaufman	8.71	1.29	6.74	2.18E-11	6.18	11.2	2.90E-02
Kendall	4.86	1.29	3.76	1.76E-04	2.32	7.39	9.20E-03
Kenedy	1.52	1.29	1.18	2.40E-01	-1.01	4.06	9.09E-04
Kerr	5.86	1.29	4.53	6.23E-06	3.32	8.39	1.33E-02
Kimble	3.27	1.29	2.53	1.13E-02	0.741	5.81	4.20E-03
King	1.45	1.29	1.12	2.63E-01	-1.09	3.98	8.23E-04
Kinney	1.29	1.29	1.00	3.20E-01	-1.25	3.82	6.50E-04
Kleberg	2.84	1.29	2.19	2.83E-02	.301	5.37	3.15E-03
Knox	0.65	1.29	0.499	6.18E-01	-1.89	3.18	1.64E-04

Doromotor	0	Standard		a		nfidence erval	Partial Eta
Parameter	β	Error	t	t Significance –	Lower Bound	Upper Bound	Squared
La Salle	3.71	1.29	2.88	4.09E-03	1.18	6.25	5.40E-03
Lamar	2.50	1.29	1.94	5.31E-02	-0.034	5.03	2.46E-03
Lamb	2.11	1.29	1.63	1.03E-01	-0.424	4.64	1.75E-03
Leon	14.1	1.29	10.9	1.66E-26	11.5	16.6	7.19E-02
Liberty	13.2	1.29	10.2	1.20E-23	10.6	15.7	6.39E-02
Limestone	4.83	1.30	3.72	2.06E-04	2.28	7.38	9.01E-03
Lipscomb	-1.44	1.31	-1.10	2.72E-01	-4.00	1.13	7.93E-04
Llano	3.14	1.29	2.43	1.51E-02	0.609	5.68	3.87E-03
Madison	5.13	1.29	3.97	7.44E-05	2.60	7.67	1.03E-02
Marion	2.42	1.29	1.87	6.15E-02	-0.116	4.95	2.30E-03
Mason	-0.15	1.29	-0.118	9.06E-01	-2.69	2.38	9.22E-06
Matagorda	5.02	1.29	3.89	1.07E-04	2.48	7.55	9.82E-03
McCulloch	1.14	1.29	0.885	3.76E-01	-1.39	3.68	5.14E-04
McLennan	11.3	1.29	8.76	5.13E-18	8.79	13.9	4.80E-02
Medina	6.79	1.29	5.26	1.69E-07	4.26	9.33	1.78E-02
Menard	1.83	1.29	1.42	1.57E-01	-0.706	4.36	1.31E-03
Milam	8.23	1.30	6.31	3.64E-10	5.67	10.8	2.55E-02
Mills	1.85	1.29	1.44	1.51E-01	-0.679	4.39	1.35E-03
Montgomery	39.5	1.29	30.6	2.81E-160	36.9	42.0	3.80E-01
Moore	4.62	1.29	3.57	3.68E-04	2.08	7.15	8.31E-03
Morris	4.29	1.29	3.32	9.29E-04	1.75	6.82	7.18E-03
Motley	0.28	1.29	0.219	8.26E-01	-2.25	2.82	3.16E-05
Nacogdoches	10.7	1.31	8.17	6.37E-16	8.12	13.3	4.20E-02
Navarro	7.87	1.29	6.09	1.39E-09	5.34	10.4	2.38E-02
Newton	4.60	1.29	3.56	3.78E-04	2.07	7.14	8.27E-03
Nolan	10.6	1.29	8.16	6.92E-16	8.02	13.1	4.19E-02
Nueces	7.52	1.29	5.81	7.48E-09	4.98	10.1	2.17E-02
Ochiltree	0.24	1.30	0.185	8.53E-01	-2.30	2.78	2.25E-05
Oldham	8.62	1.29	6.67	3.53E-11	6.08	11.2	2.84E-02
Orange	8.00	1.29	6.20	7.43E-10	5.47	10.5	2.46E-02
Panola	20.8	1.35	15.4	4.00E-50	18.1	23.4	1.36E-01
Parmer	5.00	1.29	3.87	1.13E-04	2.47	7.53	9.75E-03
Polk	16.0	1.29	12.4	1.15E-33	13.5	18.5	9.16E-02
Potter	10.2	1.29	7.87	6.55E-15	7.64	12.7	3.91E-02
Presidio	0.57	1.29	0.442	6.58E-01	-1.96	3.11	1.29E-04
Rains	0.28	1.29	0.218	8.28E-01	-2.25	2.82	3.11E-05
Randall	5.29	1.29	4.09	4.50E-05	2.75	7.82	1.09E-02
Real	1.56	1.29	1.21	2.28E-01	-0.977	4.09	9.54E-04
Red River	4.55	1.29	3.53	4.34E-04	2.02	7.09	8.10E-03
Refugio	3.27	1.31	2.50	1.25E-02	0.706	5.83	4.10E-03

Parameter	0	Standard	t	Significance		nfidence erval	Partial Eta
Parameter	β	Error	L	Significance	Lower	Upper	Squared
					Bound	Bound	
Roberts	0.56	1.30	0.434	6.64E-01	-1.98	3.11	1.24E-04
Rockwall	0.57	1.29	0.442	6.58E-01	-1.96	3.11	1.29E-04
Runnels	3.13	1.29	2.42	1.57E-02	0.590	5.66	3.83E-03
Rusk	16.8	1.33	12.6	1.68E-34	14.1	19.4	9.39E-02
Sabine	3.20	1.29	2.48	1.34E-02	0.664	5.73	4.01E-03
San Augustine	2.18	1.29	1.68	9.31E-02	-0.364	4.71	1.85E-03
San Jacinto	8.80	1.29	6.81	1.38E-11	6.27	11.3	2.96E-02
San Patricio	7.94	1.29	6.14	1.03E-09	5.40	10.5	2.42E-02
San Saba	0.43	1.29	0.332	7.40E-01	-2.11	2.96	7.23E-05
Shackelford	0.71	1.30	0.552	5.81E-01	-1.83	3.25	2.00E-04
Shelby	10.9	1.30	8.44	7.34E-17	8.40	13.5	4.47E-02
Sherman	3.38	1.29	2.62	8.90E-03	0.850	5.92	4.49E-03
Smith	33.0	1.29	25.6	3.69E-120	30.5	35.6	3.00E-01
Starr	3.47	1.30	2.67	7.64E-03	0.923	6.02	4.67E-03
Stephens	1.23	1.29	0.952	3.41E-01	-1.31	3.77	5.95E-04
Stonewall	0.19	1.29	0.147	8.83E-01	-2.35	2.73	1.42E-05
Swisher	2.14	1.29	1.66	9.73E-02	-0.391	4.68	1.80E-03
Taylor	8.88	1.29	6.88	9.00E-12	6.35	11.4	3.01E-02
Throckmorton	0.24	1.29	0.188	8.51E-01	-2.29	2.78	2.31E-05
Titus	6.10	1.29	4.72	2.56E-06	3.56	8.63	1.44E-02
Travis	22.7	1.29	17.6	3.72E-63	20.2	25.2	1.69E-01
Trinity	1.97	1.29	1.53	1.27E-01	-0.562	4.51	1.53E-03
Tyler	5.30	1.29	4.10	4.38E-05	2.76	7.83	1.09E-02
Upshur	6.54	1.29	5.06	4.70E-07	4.00	9.07	1.65E-02
Uvalde	4.43	1.29	3.43	6.27E-04	1.89	6.96	7.66E-03
Val Verde	1.49	1.29	1.16	2.48E-01	-1.04	4.03	8.77E-04
Van Zandt	8.15	1.29	6.31	3.71E-10	5.61	10.7	2.55E-02
Walker	9.68	1.29	7.49	1.12E-13	7.15	12.2	3.56E-02
Waller	7.54	1.29	5.84	6.48E-09	5.01	10.1	2.19E-02
Wharton	13.8	1.30	10.6	1.42E-25	11.3	16.3	6.93E-02
Wheeler	4.14	1.32	3.14	1.75E-03	1.55	6.72	6.42E-03
Wichita	2.50	1.31	1.90	5.72E-02	-0.076	5.07	2.37E-03
Wilbarger	3.66	1.29	2.83	4.77E-03	1.12	6.19	5.22E-03
Willacy	1.90	1.29	1.47	1.41E-01	-0.632	4.44	1.42E-03
Williamson	13.1	1.29	10.2	1.48E-23	10.6	15.7	6.36E-02
Wood	5.20	1.29	4.02	6.04E-05	2.66	7.73	1.05E-02
Young	2.71	1.30	2.09	3.65E-02	0.171	5.25	2.87E-03
Zapata	0.67	1.31	0.511	6.09E-01	-1.90	3.25	1.72E-04

Parameter	β	Standard Error	t Ratio	Prob> t
Intercept	-10.6	0.490	-21.6	<0.0001
H_i	0.00428	0.00031	13.8	<0.0001
V_i	0.00219	0.00025	8.73	<0.0001
log(VMT)	2.26	0.0863	26.2	<0.0001
Pa	arameter Estimates	for Counties in the Barnett	Shale Region	
Cooke	-0.336	0.201	-1.670	0.095
Denton	-0.045	0.204	-0.220	0.826
Erath	0.120	0.202	0.590	0.553
Hill	-0.116	0.205	-0.570	0.571
Hood	0.018	0.202	0.090	0.930
Jack	-0.178	0.202	-0.880	0.378
Johnson	-0.274	0.228	-1.200	0.231
Montague	-0.053	0.202	-0.260	0.795
Palo Pinto	-0.083	0.202	-0.410	0.680
Parker	0.110	0.207	0.530	0.596
Somervell	0.440	0.203	2.170	0.030
Tarrant	-1.368	0.231	-5.920	< 0.0001
Wise	0.169	0.208	0.810	0.417
Par	ameter Estimates fo	or Counties in the Eagle For	d Shale Region	
Atascosa	-0.216	0.204	-1.060	0.288
Bastrop	0.059	0.205	0.290	0.773
Bee	-0.452	0.201	-2.250	0.025
Brazos	-0.388	0.202	-1.920	0.055
Burleson	-0.160	0.201	-0.790	0.427
Caldwell	-0.269	0.201	-1.340	0.182
DeWitt	-0.444	0.202	-2.190	0.028
Dimmit	-0.357	0.207	-1.730	0.084
Duval	-0.087	0.201	-0.430	0.665
Fayette	-0.168	0.204	-0.820	0.411
Frio	-0.617	0.202	-3.050	0.002
Goliad	0.094	0.202	0.470	0.641
Gonzales	-0.290	0.204	-1.420	0.155
Grimes	0.432	0.202	2.140	0.032
Guadalupe	-0.041	0.204	-0.200	0.839
Jim Wells	-0.233	0.203	-1.150	0.251
Karnes	0.046	0.205	0.220	0.824
Lampasas	-0.465	0.201	-2.310	0.021
Lavaca	-0.035	0.201	-0.170	0.862
Lee	0.177	0.201	0.880	0.380
Live Oak	-0.409	0.203	-2.010	0.045

Table 38. Summary Results of Statistical Analysis for Model 3.

Parameter	β	Standard Error	t Ratio	Prob> t
Maverick	-1.213	0.214	-5.670	<0.0001
McMullen	0.761	0.204	3.730	0.000
Robertson	0.773	0.202	3.840	0.000
Victoria	-0.071	0.204	-0.350	0.728
Washington	-0.019	0.202	-0.090	0.927
Webb	-0.015	0.207	-0.070	0.941
Wilson	-0.617	0.202	-3.060	0.002
Zavala	0.231	0.202	1.140	0.252
Ра	rameter Estimates f	for Counties in the Permiar	n Basin Region	
Andrews	-0.679	0.239	-2.840	0.005
Borden	0.447	0.212	2.110	0.035
Cochran	0.401	0.208	1.930	0.054
Coke	0.195	0.204	0.960	0.337
Crane	-0.191	0.203	-0.940	0.349
Crockett	0.029	0.203	0.140	0.888
Crosby	-0.305	0.204	-1.500	0.135
Dawson	-0.726	0.201	-3.610	0.000
Dickens	0.384	0.208	1.850	0.065
Ector	0.311	0.216	1.440	0.149
Gaines	-0.689	0.203	-3.390	0.001
Garza	-0.119	0.201	-0.590	0.556
Glasscock	0.113	0.210	0.540	0.592
Hockley	0.048	0.201	0.240	0.810
Howard	0.232	0.203	1.140	0.253
Irion	0.209	0.206	1.010	0.311
Kent	0.662	0.213	3.100	0.002
Loving	1.576	0.223	7.060	<0.0001
Lubbock	-0.248	0.203	-1.230	0.220
Lynn	-0.332	0.201	-1.650	0.099
Martin	0.369	0.202	1.820	0.068
Midland	0.520	0.212	2.450	0.014
Mitchell	-0.049	0.203	-0.240	0.811
Pecos	-0.126	0.203	-0.620	0.537
Reagan	0.284	0.210	1.350	0.177
Reeves	0.003	0.202	0.010	0.989
Schleicher	0.086	0.205	0.420	0.674
Scurry	0.342	0.201	1.700	0.089
Sterling	-0.223	0.203	-1.090	0.274
Sutton	-0.139	0.201	-0.690	0.489
Terrell	0.498	0.208	2.390	0.017
Terry	-0.355	0.201	-1.760	0.078
Tom Green	0.079	0.202	0.390	0.696

Parameter	β	Standard Error	t Ratio	Prob> t
Upton	-0.123	0.219	-0.560	0.575
Ward	-0.374	0.204	-1.830	0.068
Winkler	0.083	0.204	0.410	0.684
Yoakum	0.044	0.204	0.210	0.830
	Parameter Estima	ates for the Remaining 175	Counties	
Anderson	0.197	0.202	0.970	0.330
Angelina	0.131	0.202	0.650	0.516
Aransas	-0.157	0.202	-0.780	0.436
Archer	-0.271	0.202	-1.340	0.180
Armstrong	-0.112	0.202	-0.560	0.577
Austin	-0.197	0.202	-0.980	0.329
Bailey	0.430	0.203	2.110	0.035
Bandera	-0.446	0.201	-2.210	0.027
Baylor	0.454	0.204	2.230	0.026
Bell	-0.387	0.206	-1.880	0.060
Bexar	0.650	0.209	3.110	0.002
Blanco	-0.599	0.201	-2.980	0.003
Bosque	-0.620	0.201	-3.080	0.002
Bowie	0.008	0.205	0.040	0.969
Brazoria	-0.038	0.207	-0.190	0.853
Brewster	-0.200	0.203	-0.990	0.325
Briscoe	0.667	0.213	3.130	0.002
Brooks	-0.202	0.201	-1.000	0.316
Brown	-0.560	0.201	-2.780	0.005
Burnet	-0.421	0.202	-2.090	0.037
Calhoun	-0.458	0.202	-2.270	0.023
Callahan	-0.037	0.202	-0.190	0.853
Cameron	-1.000	0.204	-4.910	<0.0001
Camp	0.101	0.203	0.500	0.619
Carson	-0.139	0.202	-0.690	0.490
Cass	0.625	0.201	3.110	0.002
Castro	0.372	0.202	1.840	0.066
Chambers	0.836	0.207	4.040	<0.0001
Cherokee	0.114	0.202	0.560	0.574
Childress	-0.561	0.201	-2.790	0.005
Clay	-0.353	0.201	-1.750	0.080
Coleman	-0.449	0.202	-2.230	0.026
Collin	0.051	0.201	0.250	0.799
Collingsworth	0.331	0.208	1.590	0.112
Colorado	0.148	0.204	0.720	0.470
Comal	-0.609	0.204	-2.990	0.003
Comanche	-0.117	0.201	-0.580	0.562

Parameter	β	Standard Error	t Ratio	Prob> t
Concho	-0.237	0.203	-1.170	0.243
Coryell	-0.096	0.201	-0.470	0.635
Cottle	0.423	0.210	2.010	0.044
Culberson	-0.368	0.201	-1.830	0.068
Dallam	0.348	0.202	1.720	0.085
Dallas	0.566	0.206	2.750	0.006
Deaf Smith	0.404	0.201	2.000	0.045
Delta	-0.089	0.204	-0.440	0.663
Donley	0.053	0.201	0.260	0.794
Eastland	0.244	0.202	1.210	0.227
Edwards	0.191	0.208	0.920	0.360
El Paso	-0.461	0.205	-2.250	0.025
Ellis	-0.222	0.204	-1.090	0.276
Falls	0.116	0.201	0.580	0.564
Fannin	-0.276	0.201	-1.370	0.171
Fisher	0.061	0.205	0.300	0.765
Floyd	-0.220	0.204	-1.080	0.281
Foard	0.463	0.213	2.180	0.030
Fort Bend	-0.109	0.208	-0.520	0.600
Franklin	-0.223	0.201	-1.110	0.267
Freestone	-0.072	0.205	-0.350	0.726
Galveston	-0.600	0.202	-2.970	0.003
Gillespie	-0.419	0.201	-2.080	0.038
Gray	0.160	0.201	0.800	0.427
Grayson	-0.461	0.202	-2.280	0.023
Gregg	1.080	0.203	5.320	< 0.0001
Hale	-0.483	0.201	-2.400	0.017
Hall	0.065	0.203	0.320	0.749
Hamilton	-0.394	0.202	-1.950	0.051
Hansford	0.417	0.206	2.030	0.043
Hardeman	-0.272	0.202	-1.350	0.178
Hardin	0.073	0.202	0.360	0.717
Harris	4.118	0.231	17.810	<0.0001
Harrison	0.306	0.207	1.480	0.140
Hartley	0.604	0.202	3.000	0.003
Haskell	-0.073	0.203	-0.360	0.720
Hays	-0.213	0.203	-1.050	0.293
Hemphill	0.511	0.204	2.500	0.012
Henderson	-0.273	0.202	-1.350	0.177
Hidalgo	-0.140	0.208	-0.670	0.503
Hopkins	-0.045	0.203	-0.220	0.826
Houston	0.216	0.201	1.080	0.282

Parameter	β	Standard Error	t Ratio	Prob> t
Hudspeth	0.417	0.203	2.050	0.040
Hunt	-0.136	0.205	-0.660	0.508
Hutchinson	-0.102	0.202	-0.510	0.613
Jackson	-0.536	0.202	-2.660	0.008
Jasper	-0.322	0.203	-1.590	0.112
Jeff Davis	-0.021	0.203	-0.100	0.917
Jefferson	0.016	0.205	0.080	0.938
Jim Hogg	-0.202	0.203	-1.000	0.319
Jones	-0.002	0.201	-0.010	0.994
Kaufman	-0.553	0.206	-2.690	0.007
Kendall	-0.375	0.202	-1.860	0.063
Kenedy	-0.783	0.201	-3.890	0.000
Kerr	-0.114	0.202	-0.570	0.572
Kimble	-0.279	0.201	-1.390	0.166
King	0.648	0.209	3.090	0.002
Kinney	-0.084	0.204	-0.420	0.678
Kleberg	-0.574	0.201	-2.850	0.004
Knox	0.167	0.206	0.810	0.418
La Salle	-0.424	0.205	-2.060	0.039
Lamar	-0.388	0.201	-1.930	0.054
Lamb	-0.080	0.201	-0.400	0.691
Leon	0.487	0.204	2.390	0.017
Liberty	0.484	0.203	2.380	0.017
Limestone	-0.117	0.201	-0.580	0.561
Lipscomb	0.298	0.208	1.430	0.153
Llano	-0.155	0.201	-0.770	0.440
Madison	-0.308	0.202	-1.520	0.128
Marion	-0.239	0.202	-1.180	0.237
Mason	-0.351	0.204	-1.720	0.085
Matagorda	-0.245	0.201	-1.220	0.224
McCulloch	-0.384	0.202	-1.900	0.058
McLennan	-0.098	0.206	-0.480	0.633
Medina	-0.243	0.202	-1.200	0.229
Menard	0.454	0.205	2.210	0.027
Milam	0.144	0.202	0.710	0.477
Mills	-0.152	0.202	-0.750	0.454
Montgomery	1.558	0.215	7.260	<0.0001
Moore	0.257	0.201	1.280	0.201
Morris	0.050	0.201	0.250	0.803
Motley	0.526	0.212	2.480	0.013
Nacogdoches	0.172	0.203	0.850	0.396
Navarro	-0.234	0.203	-1.160	0.248

Parameter	β	Standard Error	t Ratio	Prob> t
Newton	0.161	0.201	0.800	0.424
Nolan	0.416	0.201	2.060	0.039
Nueces	-0.208	0.203	-1.030	0.304
Ochiltree	-0.045	0.203	-0.220	0.824
Oldham	0.430	0.201	2.130	0.033
Orange	0.066	0.202	0.330	0.745
Panola	1.108	0.205	5.410	< 0.0001
Parmer	0.294	0.201	1.460	0.145
Polk	0.753	0.204	3.700	0.000
Potter	0.229	0.203	1.130	0.259
Presidio	-0.114	0.205	-0.560	0.578
Rains	-0.518	0.202	-2.560	0.011
Randall	-0.308	0.202	-1.530	0.127
Real	0.494	0.207	2.390	0.017
Red River	0.117	0.201	0.580	0.563
Refugio	-0.521	0.202	-2.580	0.010
Roberts	0.628	0.208	3.020	0.003
Rockwall	-0.519	0.203	-2.560	0.011
Runnels	-0.013	0.202	-0.070	0.947
Rusk	0.702	0.205	3.430	0.001
Sabine	0.136	0.202	0.680	0.499
San Augustine	0.078	0.202	0.390	0.699
San Jacinto	0.272	0.201	1.350	0.177
San Patricio	-0.330	0.204	-1.620	0.106
San Saba	-0.119	0.205	-0.580	0.564
Shackelford	0.000	0.204	0.000	1.000
Shelby	0.668	0.201	3.320	0.001
Sherman	0.531	0.203	2.620	0.009
Smith	1.433	0.210	6.830	< 0.0001
Starr	-0.617	0.202	-3.060	0.002
Stephens	-0.019	0.203	-0.090	0.925
Stonewall	0.460	0.209	2.200	0.028
Swisher	-0.222	0.201	-1.100	0.270
Taylor	0.322	0.202	1.600	0.111
Throckmorton	0.518	0.212	2.450	0.015
Titus	-0.262	0.202	-1.300	0.195
Travis	0.820	0.209	3.920	<0.0001
Trinity	-0.319	0.202	-1.580	0.114
Tyler	0.110	0.201	0.550	0.583
Upshur	-0.177	0.202	-0.880	0.381
Uvalde	-0.298	0.201	-1.480	0.139
Val Verde	-0.248	0.202	-1.230	0.220

Parameter	β	Standard Error	t Ratio	Prob> t
Van Zandt	-0.423	0.205	-2.060	0.040
Walker	-0.271	0.204	-1.320	0.186
Waller	-0.351	0.204	-1.720	0.085
Wharton	0.341	0.203	1.680	0.093
Wheeler	-0.136	0.202	-0.670	0.500
Wichita	-0.543	0.202	-2.690	0.007
Wilbarger	-0.231	0.201	-1.150	0.250
Willacy	-0.388	0.201	-1.930	0.054
Williamson	0.134	0.206	0.650	0.517
Wood	-0.210	0.202	-1.040	0.297
Young	0.043	0.202	0.220	0.829
Zapata	-0.534	0.202	-2.640	0.008