Filing Receipt

Filing Date - 2024-07-24 02:36:45 PM

Control Number - 56793

Item Number - 16
July 24, 2024

The Honorable Thomas J. Gleeson
The Honorable Lori Cobos
The Honorable Jimmy Glotfelty
The Honorable Kathleen Jackson
The Honorable Courtney K. Hjaltman
Public Utility Commission of Texas
P.O. Box 13326
Austin, TX 78711-3326

RE: Project No. 56793 – Issues Related to the Disaster Resulting from Hurricane Beryl

Dear Chairman Gleeson, Commissioner Cobos, Commissioner Glotfelty, Commissioner Jackson, and Commissioner Hjaltman:

Thank you for the opportunity for CenterPoint Energy Houston Electric, LLC (the Company) to present to you information on the impact of Hurricane Beryl, our preparation and restoration efforts, as well as the immediate, near-term, and long-term action items that will be undertaken by the Company in response to Hurricane Beryl. Please find attached the slide deck that the Company will use during its presentation at the Open Meeting scheduled for July 25, 2024. We look forward to engaging with you at the Open Meeting and as the Company implements its immediate, near-term, and long-term action items.

Sincerely,

Patrick V. Reinhart
Hurricane Beryl Presentation to the Public Utility Commission of Texas

Thursday, July 25, 2024

Jason Wells, President & CEO
Tony Gardner, SVP & Chief Customer Officer
Randy Pryor, VP Major Underground & Distribution Modernization
Opening and Action Plan

Jason Wells
Pillars of Action

The following highlights some of the critical series of actions we plan to take to improve all aspects of our future emergency response.*

Resiliency

Vegetation Management
- Target 2,000 incremental line miles with higher risk vegetation

System Hardening
- Harden nearly 350 distribution line miles to the latest extreme wind standard

Stronger Poles
- 100% of the remaining pole replacements currently planned for 2024 will be replaced with composite poles (approximately 1,000 poles)

Predictive Modeling
- Establish a 25% resource buffer
- Leverage AI to accelerate dispatch of vegetation crews based on damage modeling

Communications

Outage Tracker Tool
- Launch a new cloud-based outage tracker

Customer Engagement
- Launch initial public communications earlier in the storm cycle and establish a robust daily cadence of public communications
- Scale capacity for Power Alert Service

Partnerships

Public Awareness
- Launch emergency preparedness community education campaign
- Re-emphasize "Right Tree – Right Place" program

Backup Emergency Generation
- Increase on a short-term lease basis small increment (up to 1MW) mobile generation from 4 to 13 units
- Install donated back-up generator facilities

Enhanced Response Capability
- Engage with local Emergency Management Offices to confirm contact information of critical facilities and infrastructure

*See appendix for full list of actions.
Re-establishing Trust in Our Communications

Tony Gardner
Key Areas for Improvement

- Outage tracker
- Customer and public communications
- Estimated times for restoration (ETRs)
- Call center staffing
- Coordination with local/state emergency responders
Re-establishing Trust in Our Communications

- **New Outage Tracker by August 1** to view and report outages and restoration status

- **Daily media briefings** during events

- **Enhancements to Power Alert Service®** system for proactive texts, emails and phone calls to affected customers

- **Process for communicating global estimated time to restore (ETRs)** at the beginning of a significant outage event with updates throughout restoration activities.

- **Enhanced call center staffing** and training before storm season.
Restoring Power to Our Customers

Randy Pryor
Hurricane Beryl Overview

Key Takeaways

- **Category 1**
 - the largest Houston-area storm since 1983

- **Torrential rain and flooding**
 - with rainfall peaks of over one foot high

- **97 MPH peak wind gusts**
 - and heat wave with highs of 105 degrees

- **2.26 million people impacted**
 - by power outages
Response and Restoration

By the numbers

- 2,000+ CenterPoint Energy crew workers mobilized
- 13,000+ Mutual aid crew workers mobilized
- 22 Staging sites to support hard-hit areas
- 28 Emergency generation locations
Community and Grid Damage

By the numbers

- 35,000+ Trees removed or trimmed
- 8,500+ Circuit miles walked to repair damage (nearly 10x the width of Texas)
- 3,000+ Poles replaced
Storm Restoration

Number of Impacted Customers Restored

<table>
<thead>
<tr>
<th>Day 0 (peak)</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12%)</td>
<td>(36%)</td>
<td>(53%)</td>
<td>(61%)</td>
<td>(70%)</td>
<td>(80%)</td>
<td>(85%)</td>
<td>(92%)</td>
<td>(97%)</td>
<td>(98%)</td>
<td></td>
</tr>
</tbody>
</table>

2.084M (92%)
2.197M (97%)
2.220M (98%)

Localized outages in hardest-hit areas

815,400
1.382M
1.586M
1.812M
1.925M
2.084M
2.197M
2.220M
2.220M
Closing

Jason Wells
Engaging with our communities

Launching a widespread public outreach effort to directly engage on ways we can improve.

Key Audiences:

- Residential customers
- Business customers
- Community leaders
- Local and state elected leaders
- Emergency and first responders
- Essential service providers

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1 Meetings</td>
<td>(July)</td>
</tr>
<tr>
<td>Small Group Listening Sessions</td>
<td>(July-September)</td>
</tr>
<tr>
<td>Neighborhood Meetings and Open Houses</td>
<td>(August-September)</td>
</tr>
<tr>
<td>Emergency Responders Roundtables</td>
<td>(Ongoing)</td>
</tr>
</tbody>
</table>
Appendix
Phases of Action: Our Plan for Greater Resiliency, Improved Communications and Stronger Partnerships

<table>
<thead>
<tr>
<th>IMEDIATELY:</th>
<th>PHASE 2: Near-Term</th>
<th>PHASE 3: Long-Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Establish a 25% resource buffer</td>
<td>· Complete aerial imagery and visual inspections on all overhead distribution circuits</td>
<td>· Target the remaining 1,650 of 2,000 incremental line miles with higher risk vegetation</td>
</tr>
<tr>
<td>· Develop expanded staging site housing for four strategic locations</td>
<td>· Coordinate more closely with local, county, and state officials as well as emergency management personnel</td>
<td>· Harden nearly 350 distribution line miles to the latest extreme wind standard</td>
</tr>
<tr>
<td>· Prioritize restoration and temporary generation deployment for critical facilities</td>
<td>· Develop an emergency preparedness and response communications playbook</td>
<td>· Deploy more than 500 automated devices</td>
</tr>
<tr>
<td>· Launch initial public communications earlier in the storm cycle and establish a robust daily cadence of public communications</td>
<td>· Re-emphasize "Right Tree – Right Place" program</td>
<td>· 100% of the remaining pole replacements currently planned for 2024 will be replaced with composite poles (approximately 1,000 poles)</td>
</tr>
<tr>
<td>BY AUGUST 1, 2024</td>
<td>· Launch a plan to engage with community focus groups on outage tracker</td>
<td>BY JUNE 1, 2025</td>
</tr>
<tr>
<td>· Launch a new cloud-based outage tracker</td>
<td>· Increase call center capacity by 165% for storm events with a standard average speed of answer of 5 minutes or less</td>
<td>· Install donated back-up generator facilities</td>
</tr>
<tr>
<td>· Begin to use predictive modeling and AI technology to identify higher risk vegetation</td>
<td>· Launch Power Alert Service campaigns</td>
<td>BY DECEMBER 31, 2024</td>
</tr>
<tr>
<td>· Increase on a short-term lease basis small increment (up to 1MW) mobile generation from 4 to 13 units</td>
<td>· Scale capacity for Power Alert Service</td>
<td>· Target the remaining 1,650 of 2,000 incremental line miles with higher risk vegetation</td>
</tr>
<tr>
<td>· Adopt a policy of holding daily press briefings before and during a named storm</td>
<td>· Brief trade associations for critical care facilities</td>
<td>· Harden nearly 350 distribution line miles to the latest extreme wind standard</td>
</tr>
<tr>
<td>· Launch emergency preparedness community education campaign</td>
<td>· Engage with local Emergency Management Offices to refresh our prioritization and to confirm contact information</td>
<td>· Deploy more than 500 automated devices</td>
</tr>
<tr>
<td>BY AUGUST 15, 2024</td>
<td>· Re-train call center agents</td>
<td>· 100% of the remaining pole replacements currently planned for 2024 will be replaced with composite poles (approximately 1,000 poles)</td>
</tr>
<tr>
<td>· Complete aerial imagery and visual inspections on all overhead distribution circuits</td>
<td>· Target the first 350 of 2,000 incremental distribution line miles with higher risk vegetation</td>
<td>BY JUNE 1, 2025</td>
</tr>
<tr>
<td>· Coordinate more closely with local, county, and state officials as well as emergency management personnel</td>
<td>BY SEPTEMBER 30, 2024</td>
<td>· Install donated back-up generator facilities</td>
</tr>
<tr>
<td>· Develop an emergency preparedness and response communications playbook</td>
<td>· Leverage AI to accelerate dispatch of vegetation crews based on damage modeling</td>
<td>BY DECEMBER 31, 2024</td>
</tr>
<tr>
<td>· Re-emphasize "Right Tree – Right Place" program</td>
<td>· Based on inspections, provide to Gov's office an estimated date to execute repairs based on risk</td>
<td>· Harden nearly 350 distribution line miles to the latest extreme wind standard</td>
</tr>
<tr>
<td>· Launch a plan to engage with community focus groups on outage tracker</td>
<td>· Evaluate the expansion of the number of temporary generation units, and temporary generation transportation assets in our fleet, informed by the needs of critical facilities</td>
<td>· Deploy more than 500 automated devices</td>
</tr>
<tr>
<td>· Increase call center capacity by 165% for storm events with a standard average speed of answer of 5 minutes or less</td>
<td>· Based on damage modeling, dispatch crews as soon as safe to do so</td>
<td>· 100% of the remaining pole replacements currently planned for 2024 will be replaced with composite poles (approximately 1,000 poles)</td>
</tr>
<tr>
<td>· Launch Power Alert Service campaigns</td>
<td>· Leverage damage models to identify locations for staging sites</td>
<td>BY JUNE 1, 2025</td>
</tr>
<tr>
<td>· Scale capacity for Power Alert Service</td>
<td>· Begin using predictive modeling tools to inform resource planning to prepare for a major storm</td>
<td>· Install donated back-up generator facilities</td>
</tr>
<tr>
<td>· Brief trade associations for critical care facilities</td>
<td>BY SEPTEMBER 30, 2024</td>
<td>BY DECEMBER 31, 2024</td>
</tr>
<tr>
<td>· Engage with local Emergency Management Offices to refresh our prioritization and to confirm contact information</td>
<td>· Leverage AI to accelerate dispatch of vegetation crews based on damage modeling</td>
<td>· Harden nearly 350 distribution line miles to the latest extreme wind standard</td>
</tr>
<tr>
<td>· Re-train call center agents</td>
<td>· Based on inspections, provide to Gov's office an estimated date to execute repairs based on risk</td>
<td>· Deploy more than 500 automated devices</td>
</tr>
<tr>
<td>· Target the first 350 of 2,000 incremental distribution line miles with higher risk vegetation</td>
<td>· Evaluate the expansion of the number of temporary generation units, and temporary generation transportation assets in our fleet, informed by the needs of critical facilities</td>
<td>· 100% of the remaining pole replacements currently planned for 2024 will be replaced with composite poles (approximately 1,000 poles)</td>
</tr>
<tr>
<td>BY AUGUST 15, 2024</td>
<td>· Based on damage modeling, dispatch crews as soon as safe to do so</td>
<td>BY JUNE 1, 2025</td>
</tr>
<tr>
<td>· Leverage AI to accelerate dispatch of vegetation crews based on damage modeling</td>
<td>· Leverage damage models to identify locations for staging sites</td>
<td>· Install donated back-up generator facilities</td>
</tr>
</tbody>
</table>
Vegetation as a Driver of Long Outages

Highest cumulative rainfall totals were in the north central part of the service territory. This area also had the higher density of vegetation.

The polygons with the longest outage durations were co-located with the highest rainfall and vegetation totals.

Figures are not final and are subject to review.
Wind Speed Comparisons of Houston Hurricanes

Chart: Alexandra Kanik / Source: National Weather Service Climate Data Online